Suppr超能文献

支持视网膜发色团光异构化的双态、双模式模型的计算证据。

Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization.

作者信息

González-Luque R, Garavelli M, Bernardi F, Merchán M, Robb M A, Olivucci M

机构信息

Departamento de Quimica-Fisica, Universitat de València, Valencia, Spain.

出版信息

Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9379-84. doi: 10.1073/pnas.97.17.9379.

Abstract

In this paper we use ab initio multiconfigurational second-order perturbation theory to establish the intrinsic photoisomerization path model of retinal chromophores. This is accomplished by computing the ground state (S(0)) and the first two singlet excited-state (S(1), S(2)) energies along the rigorously determined photoisomerization coordinate of the rhodopsin chromophore model 4-cis-gamma-methylnona-2,4,6,8-tetraeniminium cation and the bacteriorhodopsin chromophore model all-trans-hepta-2,4, 6-trieniminium cation in isolated conditions. The computed S(2) and S(1) energy profiles do not show any avoided crossing feature along the S(1) reaction path and maintain an energy gap >20 kcal small middle dotmol(-1). In addition, the analysis of the charge distribution shows that there is no qualitative change in the S(2) and S(1) electronic structure along the path. Thus, the S(1) state maintains a prevalent ionic (hole-pair) character whereas the S(2) state maintains a covalent (dot-dot) character. These results, together with the analysis of the S(1) reaction coordinate, support a two-state, two-mode model of the photoisomerization that constitutes a substantial revision of the previously proposed models.

摘要

在本文中,我们使用从头算多组态二阶微扰理论来建立视网膜发色团的本征光异构化路径模型。这是通过计算视紫红质发色团模型4-顺式-γ-甲基壬-2,4,6,8-四烯亚胺阳离子和细菌视紫红质发色团模型全反式-庚-2,4,6-三烯亚胺阳离子在孤立条件下沿严格确定的光异构化坐标的基态(S(0))以及前两个单重激发态(S(1)、S(2))能量来实现的。计算得到的S(2)和S(1)能量分布在沿S(1)反应路径上未显示任何避免交叉特征,并且保持大于20千卡·摩尔⁻¹的能隙。此外,电荷分布分析表明,沿该路径S(2)和S(1)电子结构没有定性变化。因此,S(1)态保持普遍的离子(空穴对)特征,而S(2)态保持共价(点点)特征。这些结果,连同对S(1)反应坐标的分析,支持了光异构化的双态、双模模型,这对先前提出的模型进行了实质性修订。

相似文献

1
Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization.
Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9379-84. doi: 10.1073/pnas.97.17.9379.
2
The retinal chromophore/chloride ion pair: structure of the photoisomerization path and interplay of charge transfer and covalent states.
Proc Natl Acad Sci U S A. 2005 May 3;102(18):6255-60. doi: 10.1073/pnas.0408723102. Epub 2005 Apr 26.
6
The photoisomerization of retinal in bacteriorhodospin: experimental evidence for a three-state model.
Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15124-9. doi: 10.1073/pnas.93.26.15124.
7
Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level.
Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17908-13. doi: 10.1073/pnas.0407997101. Epub 2004 Dec 16.
8
Relationship between the excited state relaxation paths of rhodopsin and isorhodopsin.
J Am Chem Soc. 2008 Mar 19;130(11):3382-8. doi: 10.1021/ja0749082. Epub 2008 Feb 27.
9
Impact of Electronic State Mixing on the Photoisomerization Time Scale of the Retinal Chromophore.
J Phys Chem Lett. 2017 Oct 19;8(20):5222-5227. doi: 10.1021/acs.jpclett.7b02344. Epub 2017 Oct 11.
10

引用本文的文献

2
Study of Photoselectivity in Linear Conjugated Chromophores Using the XMS-CASPT2 Method.
ACS Phys Chem Au. 2024 Oct 2;4(6):736-749. doi: 10.1021/acsphyschemau.4c00065. eCollection 2024 Nov 27.
3
Ultrafast terahertz Stark spectroscopy reveals the excited-state dipole moments of retinal in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2319676121. doi: 10.1073/pnas.2319676121. Epub 2024 Jun 20.
5
Control of Protonated Schiff Base Excited State Decay within Visual Protein Mimics: A Unified Model for Retinal Chromophores.
Chemistry. 2021 Nov 25;27(66):16389-16400. doi: 10.1002/chem.202102383. Epub 2021 Oct 28.
6
Light-Induced Conformational Alterations in Heliorhodopsin Triggered by the Retinal Excited State.
J Phys Chem B. 2021 Aug 12;125(31):8797-8804. doi: 10.1021/acs.jpcb.1c04551. Epub 2021 Aug 3.
7
QM/MM Investigation of the Spectroscopic Properties of the Fluorophore of Bacterial Luciferase.
J Chem Theory Comput. 2021 Feb 9;17(2):605-613. doi: 10.1021/acs.jctc.0c01078. Epub 2021 Jan 15.
9
Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins.
J Membr Biol. 2019 Oct;252(4-5):425-449. doi: 10.1007/s00232-019-00095-0. Epub 2019 Sep 30.
10
Multistate Multiconfiguration Quantum Chemical Computation of the Two-Photon Absorption Spectra of Bovine Rhodopsin.
J Phys Chem Lett. 2019 Oct 17;10(20):6293-6300. doi: 10.1021/acs.jpclett.9b02291. Epub 2019 Oct 3.

本文引用的文献

1
How color visual pigments are tuned.
Trends Biochem Sci. 1999 Aug;24(8):300-5. doi: 10.1016/s0968-0004(99)01432-2.
2
Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin.
Science. 1998 Mar 20;279(5358):1886-91. doi: 10.1126/science.279.5358.1886.
4
The photoisomerization of retinal in bacteriorhodospin: experimental evidence for a three-state model.
Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15124-9. doi: 10.1073/pnas.93.26.15124.
6
Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin.
Science. 1988 May 6;240(4853):777-9. doi: 10.1126/science.3363359.
7
The visual process: photophysics and photoisomerization of model visual pigments and the primary reaction.
Photochem Photobiol. 1988 Sep;48(3):369-99. doi: 10.1111/j.1751-1097.1988.tb02836.x.
8
The first step in vision: femtosecond isomerization of rhodopsin.
Science. 1991 Oct 18;254(5030):412-5. doi: 10.1126/science.1925597.
9
Retinal has a highly dipolar vertically excited singlet state: implications for vision.
Proc Natl Acad Sci U S A. 1976 Jul;73(7):2169-73. doi: 10.1073/pnas.73.7.2169.
10
Resonance Raman studies of the conformation of retinal in rhodopsin and isorhodopsin.
J Mol Biol. 1977 Jan 15;109(2):367-72. doi: 10.1016/s0022-2836(77)80040-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验