Suppr超能文献

古菌视紫红质 3 的近红外共振拉曼光谱:跨膜电位的影响。

Near-IR resonance Raman spectroscopy of archaerhodopsin 3: effects of transmembrane potential.

机构信息

Department of Physics, Photonics Center and Molecular Biophysics Laboratory, Boston University, Boston, Massachusetts 02215, USA.

出版信息

J Phys Chem B. 2012 Dec 20;116(50):14592-601. doi: 10.1021/jp309996a. Epub 2012 Dec 11.

Abstract

Archaerhodopsin 3 (AR3) is a light driven proton pump from Halorubrum sodomense that has been used as a genetically targetable neuronal silencer and an effective fluorescent sensor of transmembrane potential. Unlike the more extensively studied bacteriorhodopsin (BR) from Halobacterium salinarum, AR3 readily incorporates into the plasma membrane of both E. coli and mammalian cells. Here, we used near-IR resonance Raman confocal microscopy to study the effects of pH and membrane potential on the AR3 retinal chromophore structure. Measurements were performed both on AR3 reconstituted into E. coli polar lipids and in vivo in E. coli expressing AR3 in the absence and presence of a negative transmembrane potential. The retinal chromophore structure of AR3 is in an all-trans configuration almost identical to BR over the entire pH range from 3 to 11. Small changes are detected in the retinal ethylenic stretching frequency and Schiff Base (SB) hydrogen bonding strength relative to BR which may be related to a different water structure near the SB. In the case of the AR3 mutant D95N, at neutral pH an all-trans retinal O-like species (O(all-trans)) is found. At higher pH a second 13-cis retinal N-like species (N(13-cis)) is detected which is attributed to a slowly decaying intermediate in the red-light photocycle of D95N. However, the amount of N(13-cis) detected is less in E. coli cells but is restored upon addition of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or sonication, both of which dissipate the normal negative membrane potential. We postulate that these changes are due to the effect of membrane potential on the N(13-cis) to M(13-cis) levels accumulated in the D95N red-light photocycle and on a molecular level by the effects of the electric field on the protonation/deprotonation of the cytoplasmic accessible SB. This mechanism also provides a possible explanation for the observed fluorescence dependence of AR3 and other microbial rhodopsins on transmembrane potential.

摘要

嗜盐菌视紫红质 3(AR3)是一种来自盐沼盐杆菌的光驱动质子泵,已被用作基因靶向神经元沉默剂和跨膜电位的有效荧光传感器。与更为广泛研究的来自盐沼盐杆菌的菌视紫红质(BR)不同,AR3 很容易整合到大肠杆菌和哺乳动物细胞的质膜中。在这里,我们使用近红外共振拉曼共聚焦显微镜研究了 pH 值和膜电位对 AR3 视黄醛发色团结构的影响。在 AR3 重新组装到大肠杆菌极性脂质中以及在没有和存在负跨膜电位的情况下在表达 AR3 的大肠杆菌中进行了测量。AR3 的视黄醛发色团结构在整个 pH 值范围 3 到 11 内几乎与 BR 完全相同,均处于全反式构型。相对于 BR,在视黄醛的乙基伸缩频率和席夫碱(SB)氢键强度上检测到小的变化,这可能与 SB 附近不同的水结构有关。在 AR3 的 D95N 突变体的情况下,在中性 pH 值下,发现了一种全反式视黄醛 O 样物质(O(all-trans))。在更高的 pH 值下,检测到第二种 13-顺式视黄醛 N 样物质(N(13-cis)),归因于 D95N 的红光光循环中的缓慢衰减中间产物。然而,在大肠杆菌细胞中检测到的 N(13-cis)的量较少,但在添加羰基氰化物 m-氯苯腙(CCCP)或超声处理后恢复,这两者都可以消除正常的负膜电位。我们推测,这些变化是由于膜电位对 D95N 红光光循环中积累的 N(13-cis)至 M(13-cis)水平的影响以及电场对细胞质可及 SB 的质子化/去质子化的影响所致。这种机制还为 AR3 和其他微生物视紫红质对跨膜电位的观察到的荧光依赖性提供了可能的解释。

相似文献

1
Near-IR resonance Raman spectroscopy of archaerhodopsin 3: effects of transmembrane potential.
J Phys Chem B. 2012 Dec 20;116(50):14592-601. doi: 10.1021/jp309996a. Epub 2012 Dec 11.
2
Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks.
J Biol Phys. 2012 Jan;38(1):153-68. doi: 10.1007/s10867-011-9246-4. Epub 2011 Dec 10.
4
Redshifted and Near-infrared Active Analog Pigments Based upon Archaerhodopsin-3.
Photochem Photobiol. 2019 Jul;95(4):959-968. doi: 10.1111/php.13093. Epub 2019 Apr 8.
8
pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: comparison with bacteriorhodopsin.
Biophys J. 2006 May 1;90(9):3322-32. doi: 10.1529/biophysj.105.076547. Epub 2006 Feb 10.
10

引用本文的文献

1
Rhodopsin charge diffusion computations disclose contrasting color-tuning mechanisms.
Nat Commun. 2025 Jul 1;16(1):5534. doi: 10.1038/s41467-025-60576-w.
2
Archaerhodopsin 3 is an ideal template for the engineering of highly fluorescent optogenetic reporters.
Chem Sci. 2024 Nov 18;16(2):761-774. doi: 10.1039/d4sc05120c. eCollection 2025 Jan 2.
4
Voltage Imaging with Engineered Proton-Pumping Rhodopsins: Insights from the Proton Transfer Pathway.
ACS Phys Chem Au. 2023 May 3;3(4):320-333. doi: 10.1021/acsphyschemau.3c00003. eCollection 2023 Jul 26.
5
On the fluorescence enhancement of arch neuronal optogenetic reporters.
Nat Commun. 2022 Oct 28;13(1):6432. doi: 10.1038/s41467-022-33993-4.
6
QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins.
Nat Commun. 2022 Sep 20;13(1):5501. doi: 10.1038/s41467-022-33084-4.
7
Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering.
Front Chem. 2022 Jun 22;10:879609. doi: 10.3389/fchem.2022.879609. eCollection 2022.
8
Two states of a light-sensitive membrane protein captured at room temperature using thin-film sample mounts.
Acta Crystallogr D Struct Biol. 2022 Jan 1;78(Pt 1):52-58. doi: 10.1107/S2059798321011220.
9
Optical Switching Between Long-lived States of Opsin Transmembrane Voltage Sensors.
Photochem Photobiol. 2021 Sep;97(5):1001-1015. doi: 10.1111/php.13428. Epub 2021 May 14.

本文引用的文献

1
Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks.
J Biol Phys. 2012 Jan;38(1):153-68. doi: 10.1007/s10867-011-9246-4. Epub 2011 Dec 10.
2
Optical recording of action potentials in mammalian neurons using a microbial rhodopsin.
Nat Methods. 2011 Nov 27;9(1):90-5. doi: 10.1038/nmeth.1782.
3
A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex.
Front Syst Neurosci. 2011 Apr 13;5:18. doi: 10.3389/fnsys.2011.00018. eCollection 2011.
4
Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein.
Science. 2011 Jul 15;333(6040):345-8. doi: 10.1126/science.1204763.
5
Optogenetics in neural systems.
Neuron. 2011 Jul 14;71(1):9-34. doi: 10.1016/j.neuron.2011.06.004.
6
Proton transfer via a transient linear water-molecule chain in a membrane protein.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11435-9. doi: 10.1073/pnas.1104735108. Epub 2011 Jun 27.
7
Ultra light-sensitive and fast neuronal activation with the Ca²+-permeable channelrhodopsin CatCh.
Nat Neurosci. 2011 Apr;14(4):513-8. doi: 10.1038/nn.2776. Epub 2011 Mar 13.
8
An optogenetic toolbox designed for primates.
Nat Neurosci. 2011 Mar;14(3):387-97. doi: 10.1038/nn.2749. Epub 2011 Jan 30.
9
Optogenetics.
Nat Methods. 2011 Jan;8(1):26-9. doi: 10.1038/nmeth.f.324. Epub 2010 Dec 20.
10
Controlling the brain with light.
Sci Am. 2010 Nov;303(5):48-55. doi: 10.1038/scientificamerican1110-48.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验