Christoyianni I, Koutras A, Dermatas E, Kokkinakis G
WCL, Department of Electrical and Computer Engineering, University of Patras, 26100 Patras, Greece.
Comput Med Imaging Graph. 2002 Sep-Oct;26(5):309-19. doi: 10.1016/s0895-6111(02)00031-9.
A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this paper which employs features extracted by a new technique based on independent component analysis. Our approach is concentrated in finding a set of independent source regions that generate the observed mammograms. The coefficients of the linear transformation of the source regions are used as features that describe effectively any normal and abnormal region in digital mammograms as well as benign and malignant ROS in the latter case. Extensive experiments in the MIAS Database have shown a recognition accuracy of 88.23% in the detection of all kinds of abnormalities and 79.31% in the task of distinguishing between benign and malignant regions, outperforming in both cases standard textural features, widely used for cancer detection in mammograms.
本文提出了一种对数字化乳腺X线照片上的可疑区域(ROS)进行计算机辅助神经网络分类的方法,该方法采用了基于独立成分分析的新技术提取的特征。我们的方法集中于找到一组生成观察到的乳腺X线照片的独立源区域。源区域线性变换的系数被用作特征,这些特征能够有效描述数字乳腺X线照片中的任何正常和异常区域,在后一种情况下还能描述良性和恶性ROS。在MIAS数据库中进行的大量实验表明,在检测各种异常时的识别准确率为88.23%,在区分良性和恶性区域的任务中识别准确率为79.31%,在这两种情况下均优于广泛用于乳腺X线照片癌症检测的标准纹理特征。