Davis Brian K
Research Foundation of Southern California, Inc., La Jolla, CA 92037, USA.
Prog Biophys Mol Biol. 2002 May-Jul;79(1-3):77-133. doi: 10.1016/s0079-6107(02)00012-3.
Amino acids at conserved sites in the residue sequence of 10 ancient proteins, from 844 phylogenetically diverse sources, were used to specify their time of origin in the interval before species divergence from the last common ancestor (LCA). The order of amino acid addition to the genetic code, based on biosynthesis path length and other molecular evidence, provided a reference for evaluating the 'code age' of each residue profile examined. Significantly earlier estimates were obtained for conserved amino acid residues in these proteins than non-conserved residues. Evidence from the primary structure of 'fossil' proteins thus corroborated the biosynthetic order of amino acid addition to the code.Low potential ferredoxin (Fdxn) had the earliest residue profile among the proteins in this study. A phylogenetic tree for 82 prokaryote Fdxn sequences was rooted midway between bacteria and archaea branches. LCA Fdxn had a 23-residue antecedent whose residue profile matched mid-expansion phase codon assignments and included an amide residue. It contained a highly acidic N-terminal region and a non-charged C-terminal region, with all four cysteine residues. This small protein apparently anchored a [4Fe-4S] cluster, ligated by C-terminal cysteines, to a positively charged mineral surface, consistent with mediating e(-) transfer in a primordial surface system before cells appeared. Its negatively charged N-terminal 'attachment site' was highly mutable during evolution of ancestral Fdxn for Bacteria and Archaea, consistent with a loss of function after cell formation. An initial glutamate to lysine substitution may link 'attachment site' removal to early post-expansion phase entry of basic amino acids to the code. As proteins evidently anchored non-charged amide residues initially, surface attachment of cofactors and other functional groups emerges as a general function of pre-cell proteins.A phylogenetic tree of 107 proteolipid (PL) helix-1 sequences from H(+)-ATPase of bacteria, archaea and eukaryotes had its root between prokaryote branches. LCA PL h1 residue profile optimally fit a late expansion phase codon array. Sequence repeats in transmembrane PL helices h1 and h2 indicated formation of the archetypal PL hairpin structure involved successive tandem duplications, initiated within the gene for an 11-residue (or 4-residue) hydrophobic peptide. Ancestral PL h1 lacked acidic residues, in a fundamental departure from the prototype pre-cell protein. By this stage, proteins with a hydrophobic domain had evolved. Its non-polar, late expansion phase residue profile point to ancestral PL being a component of an early permeable cell membrane. Other indicators of cell formation about this stage of code evolution include phospholipid biosynthesis path length, FtsZ residue profile, and late entry of basic amino acids into the genetic code. Estimates based on conserved residues in prokaryote cell septation protein, FtsZ, and proteins involved with synthesis, transcription and replication of DNA revealed FtsZ, ribonucleotide reductase, RNA polymerase core subunits and 5'-->3' flap exonuclease, FEN-1, originated soon after cells putatively evolved. While reverse transcriptase and topoisomerase I, Topo I, appeared late in the pre-divergence era, when the genetic code was essentially complete. The transition from RNA genes to a DNA genome seemingly proceeded via formation of a DNA-RNA heteroduplex. These results suggest formation of DNA awaited evolution of a catalyst with a hydrophobic domain, capable of sequestering radical bearing intermediates in its synthesis from ribonucleotide precursors. Late formation of topology altering protein, Topo I, further suggests consolidation of genes into chromosomes followed synthesis of comparatively thermostable DNA strands.
来自844个系统发育不同来源的10种古老蛋白质残基序列中的保守位点氨基酸,被用于确定它们在从最后一个共同祖先(LCA)物种分化之前的时间段内的起源时间。基于生物合成路径长度和其他分子证据的遗传密码中氨基酸添加顺序,为评估所检测的每个残基谱的“密码年龄”提供了参考。这些蛋白质中保守氨基酸残基的估计时间明显早于非保守残基。因此,“化石”蛋白质一级结构的证据证实了氨基酸添加到密码中的生物合成顺序。低电位铁氧化还原蛋白(Fdxn)在本研究的蛋白质中具有最早的残基谱。82个原核生物Fdxn序列的系统发育树在细菌和古菌分支之间的中间位置生根。LCA Fdxn有一个23个残基的前身,其残基谱与中期扩展阶段密码子分配相匹配,包括一个酰胺残基。它包含一个高度酸性的N端区域和一个不带电荷的C端区域,带有所有四个半胱氨酸残基。这种小蛋白质显然将一个由C端半胱氨酸连接的[4Fe - 4S]簇锚定在带正电荷的矿物表面,这与在细胞出现之前的原始表面系统中介导电子转移一致。其带负电荷的N端“附着位点”在细菌和古菌的祖先Fdxn进化过程中高度可变,这与细胞形成后功能丧失一致。最初的谷氨酸到赖氨酸的取代可能将“附着位点”的去除与碱性氨基酸在扩展阶段后期进入密码联系起来。由于蛋白质最初显然锚定不带电荷的酰胺残基,辅因子和其他功能基团的表面附着成为细胞前蛋白质的一般功能。来自细菌、古菌和真核生物H(+) - ATPase的107个蛋白脂质(PL)螺旋 - 1序列的系统发育树在原核生物分支之间生根。LCA PL h1残基谱最适合晚期扩展阶段密码子阵列。跨膜PL螺旋h1和h2中的序列重复表明,原型PL发夹结构的形成涉及连续的串联重复,起始于一个11个残基(或4个残基)疏水肽的基因内。祖先PL h1缺乏酸性残基,这与原型细胞前蛋白质有根本不同。到这个阶段,具有疏水结构域的蛋白质已经进化。其非极性的晚期扩展阶段残基谱表明祖先PL是早期可渗透细胞膜的一个组成部分。关于密码进化这个阶段细胞形成的其他指标包括磷脂生物合成路径长度、FtsZ残基谱以及碱性氨基酸进入遗传密码的晚期。基于原核生物细胞分裂蛋白FtsZ以及参与DNA合成、转录和复制的蛋白质中的保守残基估计表明,FtsZ、核糖核苷酸还原酶、RNA聚合酶核心亚基和5'→3'瓣状核酸外切酶FEN - 1在假定细胞进化后不久就起源了。而逆转录酶和拓扑异构酶I(Topo I)在分化前时代后期出现,此时遗传密码基本完成。从RNA基因到DNA基因组的转变似乎是通过形成DNA - RNA异源双链体进行的。这些结果表明,DNA的形成等待着具有疏水结构域的催化剂的进化,该催化剂能够在从核糖核苷酸前体合成DNA的过程中隔离携带自由基的中间体。拓扑改变蛋白Topo I的晚期形成进一步表明,在合成相对耐热的DNA链之后,基因整合到染色体中。