Laudadio T, Mastronardi N, Vanhamme L, Van Hecke P, Van Huffel S
Katholieke Universiteit Leuven, Department of Electrical Engineering, Division ESAT-SCD (SISTA), Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium.
J Magn Reson. 2002 Aug;157(2):292-7. doi: 10.1006/jmre.2002.2593.
Magnetic resonance spectroscopy (MRS) has been shown to be a potentially important medical diagnostic tool. The success of MRS depends on the quantitative data analysis, i.e., the interpretation of the signal in terms of relevant physical parameters, such as frequencies, decay constants, and amplitudes. A variety of time-domain algorithms to extract parameters have been developed. On the one hand, there are so-called blackbox methods. Minimal user interaction and limited incorporation of prior knowledge are inherent to this type of method. On the other hand, interactive methods exist that are iterative, require user involvement, and allow inclusion of prior knowledge. We focus on blackbox methods. The computationally most intensive part of these blackbox methods is the computation of the singular value decomposition (SVD) of a Hankel matrix. Our goal is to reduce the needed computational time without affecting the accuracy of the parameters of interest. To this end, algorithms based on the Lanczos method are suitable because the main computation at each step, a matrix-vector product, can be efficiently performed by means of the fast Fourier transform exploiting the structure of the involved matrix. We compare the performance in terms of accuracy and efficiency of four algorithms: the classical SVD algorithm based on the QR decomposition, the Lanczos algorithm, the Lanczos algorithm with partial reorthogonalization, and the implicitly restarted Lanczos algorithm. Extensive simulation studies show that the latter two algorithms perform best.
磁共振波谱学(MRS)已被证明是一种潜在的重要医学诊断工具。MRS的成功取决于定量数据分析,即根据相关物理参数(如频率、衰减常数和幅度)对信号进行解释。已经开发了多种用于提取参数的时域算法。一方面,有所谓的黑箱方法。这种方法的固有特点是用户交互最少且先验知识的纳入有限。另一方面,存在交互式方法,这些方法是迭代的,需要用户参与,并允许纳入先验知识。我们专注于黑箱方法。这些黑箱方法中计算量最大的部分是汉克尔矩阵的奇异值分解(SVD)的计算。我们的目标是在不影响感兴趣参数准确性的情况下减少所需的计算时间。为此,基于兰索斯方法的算法是合适的,因为每一步的主要计算(矩阵 - 向量乘积)可以通过利用所涉及矩阵的结构借助快速傅里叶变换有效地执行。我们比较了四种算法在准确性和效率方面的性能:基于QR分解的经典SVD算法、兰索斯算法、带有部分重新正交化的兰索斯算法以及隐式重启兰索斯算法。广泛的模拟研究表明后两种算法表现最佳。