Suppr超能文献

多个基因组规模数据集的比较分析。

Comparative analysis of multiple genome-scale data sets.

作者信息

Werner-Washburne Margaret, Wylie Brian, Boyack Kevin, Fuge Edwina, Galbraith Judith, Weber Jose, Davidson George

机构信息

Biology Department, University of New Mexico, Albuquerque, New Mexico 87131, USA.

出版信息

Genome Res. 2002 Oct;12(10):1564-73. doi: 10.1101/gr.225402.

Abstract

The ongoing analyses of published genome-scale data sets is evidence that different approaches are required to completely mine this data. We report the use of novel tools for both visualization and data set comparison to analyze yeast gene-expression (cell cycle and exit from stationary phase/G(0)) and protein-interaction studies. This analysis led to new insights about each data set. For example, G(1)-regulated genes are not co-regulated during exit from stationary phase, indicating that the cells are not synchronized. The tight clustering of other genes during exit from stationary-phase data set further indicates the physiological responses during G(0) exit are separable from cell-cycle events. Comparison of the two data sets showed that ribosomal-protein genes cluster tightly during exit from stationary phase, but are found in three significantly different clusters in the cell-cycle data set. Two protein-interaction data sets were also compared with the gene-expression data. Visual analysis of the complete data sets showed no clear correlation between co-expression of genes and protein interactions, in contrast to published reports examining subsets of the protein-interaction data. Neither two-hybrid study identified a large number of interactions between ribosomal proteins, consistent with recent structural data, indicating that for both data sets, the identification of false-positive interactions may be lower than previously thought.

摘要

对已发表的基因组规模数据集进行的持续分析表明,需要采用不同方法才能完全挖掘这些数据。我们报告了使用新型工具进行可视化和数据集比较,以分析酵母基因表达(细胞周期以及从静止期/G(0)期退出)和蛋白质相互作用研究。该分析为每个数据集带来了新的见解。例如,G(1)调控的基因在从静止期退出过程中并非共同调控,这表明细胞并未同步。在从静止期数据集退出过程中其他基因的紧密聚类进一步表明,G(0)期退出期间的生理反应与细胞周期事件是可分离的。两个数据集的比较表明,核糖体蛋白基因在从静止期退出时紧密聚类,但在细胞周期数据集中则分布在三个明显不同的聚类中。还将两个蛋白质相互作用数据集与基因表达数据进行了比较。对完整数据集的可视化分析表明,与已发表的检查蛋白质相互作用数据子集的报告相反,基因的共表达与蛋白质相互作用之间没有明显的相关性。两项双杂交研究均未发现核糖体蛋白之间存在大量相互作用,这与最近的结构数据一致,表明对于这两个数据集,假阳性相互作用的识别率可能比之前认为的要低。

相似文献

10
Vector algebra in the analysis of genome-wide expression data.全基因组表达数据分析中的向量代数
Genome Biol. 2002;3(3):RESEARCH0011. doi: 10.1186/gb-2002-3-3-research0011. Epub 2002 Feb 13.

引用本文的文献

6
Bacterial postgenomics: the promise and peril of systems biology.细菌后基因组学:系统生物学的前景与风险
J Bacteriol. 2006 Dec;188(23):7999-8004. doi: 10.1128/JB.01195-06. Epub 2006 Sep 22.

本文引用的文献

3
A new approach to decoding life: systems biology.解码生命的新方法:系统生物学。
Annu Rev Genomics Hum Genet. 2001;2:343-72. doi: 10.1146/annurev.genom.2.1.343.
6
Networking proteins in yeast.酵母中的网络蛋白
Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4277-8. doi: 10.1073/pnas.091096398.
7
A comprehensive two-hybrid analysis to explore the yeast protein interactome.一项探索酵母蛋白质相互作用组的全面双杂交分析。
Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4569-74. doi: 10.1073/pnas.061034498. Epub 2001 Mar 13.
10
Cell cycle activation by c-myc in a burkitt lymphoma model cell line.在伯基特淋巴瘤模型细胞系中,c-myc对细胞周期的激活作用。
Int J Cancer. 2000 Sep 15;87(6):787-93. doi: 10.1002/1097-0215(20000915)87:6<787::aid-ijc4>3.0.co;2-6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验