Suppr超能文献

酿酒酵母稳定期及退出的基因组分析:基因表达与新型必需基因的鉴定

Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes.

作者信息

Martinez M Juanita, Roy Sushmita, Archuletta Amanda B, Wentzell Peter D, Anna-Arriola Sonia Santa, Rodriguez Angelina L, Aragon Anthony D, Quiñones Gabriel A, Allen Chris, Werner-Washburne Margaret

机构信息

Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Mol Biol Cell. 2004 Dec;15(12):5295-305. doi: 10.1091/mbc.e03-11-0856. Epub 2004 Sep 29.

Abstract

Most cells on earth exist in a quiescent state. In yeast, quiescence is induced by carbon starvation, and exit occurs when a carbon source becomes available. To understand how cells survive in, and exit from this state, mRNA abundance was examined using oligonucleotide-based microarrays and quantitative reverse transcription-polymerase chain reaction. Cells in stationary-phase cultures exhibited a coordinated response within 5-10 min of refeeding. Levels of >1800 mRNAs increased dramatically (>or=64-fold), and a smaller group of stationary-phase mRNAs decreased in abundance. Motif analysis of sequences upstream of genes clustered by VxInsight identified an overrepresentation of Rap1p and BUF (RPA) binding sites in genes whose mRNA levels rapidly increased during exit. Examination of 95 strains carrying deletions in stationary-phase genes induced identified 32 genes essential for survival in stationary-phase at 37 degrees C. Analysis of these genes suggests that mitochondrial function is critical for entry into stationary-phase and that posttranslational modifications and protection from oxidative stress become important later. The phylogenetic conservation of stationary-phase genes, and our findings that two-thirds of the essential stationary-phase genes have human homologues and of these, many have human homologues that are disease related, demonstrate that yeast is a bona fide model system for studying the quiescent state of eukaryotic cells.

摘要

地球上的大多数细胞处于静止状态。在酵母中,碳饥饿会诱导静止状态,而当有碳源时细胞会退出静止状态。为了解细胞如何在这种状态下存活并从中退出,我们使用基于寡核苷酸的微阵列和定量逆转录-聚合酶链反应来检测mRNA丰度。处于稳定期培养的细胞在重新喂食后5-10分钟内表现出协调反应。超过1800种mRNA的水平急剧增加(≥64倍),而一小部分稳定期mRNA的丰度下降。通过VxInsight聚类的基因上游序列的基序分析表明,在退出过程中mRNA水平迅速增加的基因中,Rap1p和BUF(RPA)结合位点过度富集。对95株携带稳定期基因缺失的菌株进行检测,发现有32个基因在37℃下的稳定期存活中至关重要。对这些基因的分析表明,线粒体功能对于进入稳定期至关重要,而翻译后修饰和抗氧化应激保护在后期变得重要。稳定期基因的系统发育保守性,以及我们发现三分之二的必需稳定期基因具有人类同源物,其中许多人类同源物与疾病相关,这表明酵母是研究真核细胞静止状态的真正模型系统。

相似文献

5
Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae.
Genome Biol. 2003;5(1):R2. doi: 10.1186/gb-2003-5-1-r2. Epub 2003 Dec 22.
6
Differential transcription of the two Saccharomyces cerevisiae genes encoding elongation factor 2.
Gene. 1994 Oct 11;148(1):143-7. doi: 10.1016/0378-1119(94)90248-8.
7
Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures.
Mol Biol Cell. 2008 Mar;19(3):1271-80. doi: 10.1091/mbc.e07-07-0666. Epub 2008 Jan 16.
8
Comparative analysis of multiple genome-scale data sets.
Genome Res. 2002 Oct;12(10):1564-73. doi: 10.1101/gr.225402.
10
A general topoisomerase I-dependent transcriptional repression in the stationary phase in yeast.
Genes Dev. 1991 Dec;5(12A):2315-26. doi: 10.1101/gad.5.12a.2315.

引用本文的文献

3
Riboproteome remodeling during quiescence exit in .
iScience. 2023 Dec 14;27(1):108727. doi: 10.1016/j.isci.2023.108727. eCollection 2024 Jan 19.
4
A Systematic Review on Quiescent State Research Approaches in .
Cells. 2023 Jun 12;12(12):1608. doi: 10.3390/cells12121608.
5
Quiescence in .
Annu Rev Genet. 2022 Nov 30;56:253-278. doi: 10.1146/annurev-genet-080320-023632.
8
Exploring the transportome of the biosurfactant producing yeast Starmerella bombicola.
BMC Genomics. 2022 Jan 9;23(1):22. doi: 10.1186/s12864-021-08177-x.
9
Is There a Histone Code for Cellular Quiescence?
Front Cell Dev Biol. 2021 Oct 29;9:739780. doi: 10.3389/fcell.2021.739780. eCollection 2021.

本文引用的文献

1
"Sleeping beauty": quiescence in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2004 Jun;68(2):187-206. doi: 10.1128/MMBR.68.2.187-206.2004.
3
A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
Genome Biol. 2004;5(2):R7. doi: 10.1186/gb-2004-5-2-r7. Epub 2004 Jan 15.
4
A genetic screen for yeast genes induced by sustained osmotic stress.
Yeast. 2003 Jul 30;20(10):913-20. doi: 10.1002/yea.1019.
5
Integrating regulatory motif discovery and genome-wide expression analysis.
Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3339-44. doi: 10.1073/pnas.0630591100. Epub 2003 Mar 7.
7
Stationary phase in yeast.
Curr Opin Microbiol. 2002 Dec;5(6):602-7. doi: 10.1016/s1369-5274(02)00377-6.
9
Comparative analysis of multiple genome-scale data sets.
Genome Res. 2002 Oct;12(10):1564-73. doi: 10.1101/gr.225402.
10
Role of a ubiquitin-like modification in polarized morphogenesis.
Science. 2002 Mar 29;295(5564):2442-6. doi: 10.1126/science.1069989.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验