Conservation of long-range synteny and microsynteny between the genomes of two distantly related nematodes.
作者信息
Guiliano D B, Hall N, Jones S J M, Clark L N, Corton C H, Barrell B G, Blaxter M L
机构信息
Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, UK.
出版信息
Genome Biol. 2002 Sep 26;3(10):RESEARCH0057. doi: 10.1186/gb-2002-3-10-research0057.
BACKGROUND
Comparisons between the genomes of the closely related nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal high rates of rearrangement, with a bias towards within-chromosome events. To assess whether this pattern is true of nematodes in general, we have used genome sequence to compare two nematode species that last shared a common ancestor approximately 300 million years ago: the model C. elegans and the filarial parasite Brugia malayi.
RESULTS
An 83 kb region flanking the gene for Bm-mif-1 (macrophage migration inhibitory factor, a B. malayi homolog of a human cytokine) was sequenced. When compared to the complete genome of C. elegans, evidence for conservation of long-range synteny and microsynteny was found. Potential C. elegans orthologs for II of the 12 protein-coding genes predicted in the B. malayi sequence were identified. Ten of these orthologs were located on chromosome I, with eight clustered in a 2.3 Mb region. While several, relatively local, intrachromosomal rearrangements have occurred, the order, composition, and configuration of two gene clusters, each containing three genes, was conserved. Comparison of B. malayi BAC-end genome survey sequence to C. elegans also revealed a bias towards intrachromosome rearrangements.
CONCLUSIONS
We suggest that intrachromosomal rearrangement is a major force driving chromosomal organization in nematodes, but is constrained by the interdigitation of functional elements of neighboring genes.