Panagopoulos Dimitris J, Karabarbounis Andreas, Margaritis Lukas H
Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens GR-15784, Greece.
Biochem Biophys Res Commun. 2002 Oct 18;298(1):95-102. doi: 10.1016/s0006-291x(02)02393-8.
A biophysical model for the action of oscillating electric fields on cells, presented by us before [Biochem. Biophys. Res. Commun. 272(3) (2000) 634-640], is extended now to include oscillating magnetic fields as well, extended to include the most active biological conditions, and also to explain why pulsed electromagnetic fields can be more active biologically than continuous ones. According to the present theory, the low frequency fields are the most bioactive ones. The basic mechanism is the forced-vibration of all the free ions on the surface of a cell's plasma membrane, caused by an external oscillating field. We have shown that this coherent vibration of electric charge is able to irregularly gate electrosensitive channels on the plasma membrane and thus cause disruption of the cell's electrochemical balance and function [Biochem. Biophys. Res. Commun. 272(3) (2000) 634-640]. It seems that this simple idea can be easily extended now and looks very likely to be able to give a realistic basis for the explanation of a wide range of electromagnetic field bioeffects.
我们之前提出的一个关于振荡电场对细胞作用的生物物理模型[《生物化学与生物物理研究通讯》272(3)(2000)634 - 640],现在进行了扩展,将振荡磁场也纳入其中,扩展到涵盖最活跃的生物条件,并且还解释了为什么脉冲电磁场在生物学上比连续电磁场更具活性。根据当前理论,低频场是生物活性最强的场。其基本机制是由外部振荡场引起的细胞膜表面所有自由离子的受迫振动。我们已经表明,这种电荷的相干振动能够不规则地开启质膜上的电敏感通道,从而导致细胞电化学平衡和功能的破坏[《生物化学与生物物理研究通讯》272(3)(2000)634 - 640]。现在看来,这个简单的想法可以很容易地扩展,而且很有可能为解释广泛的电磁场生物效应提供一个现实的基础。