Suppr超能文献

反馈语义在视觉单词识别中的作用:词汇判断和命名任务中的特征数量效应

The impact of feedback semantics in visual word recognition: number-of-features effects in lexical decision and naming tasks.

作者信息

Pexman Penny M, Lupker Stephen J, Hino Yasushi

机构信息

Department of Psychology, University of Calgary, Alberta, Canada.

出版信息

Psychon Bull Rev. 2002 Sep;9(3):542-9. doi: 10.3758/bf03196311.

Abstract

The notion of feedback activation from semantics to both orthography and phonology has recently been used to explain a number of semantic effects in visual word recognition, including polysemy effects (Hino & Lupker, 1996; Pexman & Lupker, 1999) and synonym effects (Pecher, 2001). In the present research, we tested an account based on feedback activation by investigating a new semantic variable: number of features (NOF). Words with high NOF (e.g., LION) should activate richer semantic representations than do words with low NOF (e.g., LIME). As a result, the feedback activation from semantics to orthographic and phonological representations should be greater for high-NOF words, which should produce superior lexical decision task (LDT) and naming task performance. The predicted facilitory NOF effects were observed in both LDT and naming.

摘要

最近,从语义到正字法和音系学的反馈激活概念已被用于解释视觉单词识别中的一些语义效应,包括一词多义效应(日野 & 勒普克,1996;佩克斯曼 & 勒普克,1999)和同义词效应(佩彻,2001)。在本研究中,我们通过研究一个新的语义变量:特征数量(NOF),来测试基于反馈激活的一种解释。具有高NOF的单词(如“狮子”)应该比具有低NOF的单词(如“酸橙”)激活更丰富的语义表征。因此,从语义到正字法和音系学表征的反馈激活对于高NOF单词应该更大,这应该会产生更好的词汇判断任务(LDT)和命名任务表现。在LDT和命名任务中都观察到了预测的促进性NOF效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验