Suppr超能文献

Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta Supersite Experiment.

作者信息

Lim Ho-Jin, Turpin Barbara J

机构信息

Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA.

出版信息

Environ Sci Technol. 2002 Nov 1;36(21):4489-96. doi: 10.1021/es0206487.

Abstract

Time-resolved ambient particulate organic (OC) and elemental carbon (EC) data measured in Atlanta, GA, during the Atlanta Supersite Experiment (August3-September 1, 1999) were investigated to determine the temporal trends of atmospheric carbonaceous aerosol and to examine the relative contributions of primary and secondary OC to measured particulate OC. Mean 1-h average concentrations (ranges in parentheses) of PM2.5 OC, EC, and total carbon were 8.3 (3.6-15.8), 2.3 (0.3-9.6), and 10.6 (4.6-24.6) microg of C m(-3), respectively, based on Rutgers University/Oregon Graduate Institute in situ thermal-optical carbon analyzer measurements. Carbonaceous matter (organic material 40%; EC 8%) comprised approximately 48% of PM2.5 mass in Atlanta. Primary and secondary OC concentrations were estimated using an EC tracer method. Secondary OC contributed approximately 46% of measured particulate OC, and 1-h average contributions ranged up to 88%. Vehicle emissions appear to be the dominant contributors to measured EC and primary OC concentrations based on temporal patterns of EC, primary OC, and CO. This research suggests that secondary OC concentrations in Atlanta were influenced by (1) "fresh" secondary organic aerosol formed by photochemical reactions locally in the early afternoons as seen in the Los Angeles air basin and (2) "aged" secondary organic aerosol transported from upwind regions or formed on previous days. Nocturnal peaks in secondary OC and ozone concentrations were observed on several days. The most probable explanation for this is the favorable partitioning of semivolatile organic compounds to the particulate phase driven by temperature decreases and relative humidity increases at night and vertical transport of regional pollutants from above to ground level.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验