Stygar W A, Gerdin G A, Fehl D L
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):046417. doi: 10.1103/PhysRevE.66.046417. Epub 2002 Oct 29.
We have developed explicit quantum-mechanical expressions for the conductivity and resistivity tensors of a Lorentz plasma in a magnetic field. The expressions are based on a solution to the Boltzmann equation that is exact when the electric field is weak, the electron-Fermi-degeneracy parameter Theta>>1, and the electron-ion Coulomb-coupling parameter Gamma/Z<<1. (Gamma is the ion-ion coupling parameter and Z is the ion charge state.) Assuming a screened 1/r electron-ion scattering potential, we calculate the Coulomb logarithm in the second Born approximation. The ratio of the term obtained in the second approximation to that obtained in the first is used to define the parameter regime over which the calculation is valid. We find that the accuracy of the approximation is determined by Gamma/Z and not simply the temperature, and that a quantum-mechanical description can be required at temperatures orders of magnitude less than assumed by Spitzer [Physics of Fully Ionized Gases (Wiley, New York, 1962)]. When the magnetic field B=0, the conductivity is identical to the Spitzer result except the Coulomb logarithm ln Lambda(1)=(ln chi(1)-1 / 2)+[(2Ze(2)/lambdam(e)v(2)(e1))(ln chi(1)-ln 2(4/3))], where chi(1) identical with 2m(e)v(e1)lambda/ variant Planck's over 2pi, m(e) is the electron mass, v(e1) identical with (7k(B)T/m(e))(1/2), k(B) is the Boltzmann constant, T is the temperature, lambda is the screening length, variant Planck's over 2pi is Planck's constant divided by 2pi, and e is the absolute value of the electron charge. When the plasma Debye length lambda(D) is greater than the ion-sphere radius a, we assume lambda=lambda(D); otherwise we set lambda=a. The B=0 conductivity is consistent with measurements when Z greater, similar 1, Theta greater, similar 2, and Gamma/Z less, similar 1, and in this parameter regime appears to be more accurate than previous analytic models. The minimum value of ln Lambda(1) when Z> or =1, Theta> or =2, and Gamma/Z< or =1 is 1.9. The expression obtained for the resistivity tensor (B not equal 0) predicts that eta( perpendicular )/eta( parallel ) (where eta( perpendicular ) and eta( parallel ) are the resistivities perpendicular and parallel to the magnetic field) can be as much as 40% less than previous analytic calculations. The results are applied to an idealized 17-MA z pinch at stagnation.
我们已经推导出了磁场中洛伦兹等离子体电导率和电阻率张量的显式量子力学表达式。这些表达式基于玻尔兹曼方程的一个解,当电场较弱、电子费米简并参数Θ>>1且电子 - 离子库仑耦合参数Γ/Z<<1时,该解是精确的。(Γ是离子 - 离子耦合参数,Z是离子电荷态。)假设存在屏蔽的1/r电子 - 离子散射势,我们在二级玻恩近似下计算库仑对数。用二级近似中得到的项与一级近似中得到的项的比值来定义计算有效的参数范围。我们发现近似的精度由Γ/Z决定,而不仅仅由温度决定,并且在比斯皮策[《完全电离气体物理学》(威利出版社,纽约,1962年)]所假设的温度低几个数量级的情况下,可能就需要量子力学描述。当磁场B = 0时,电导率与斯皮策结果相同,只是库仑对数lnΛ(1)=(lnχ(1)-1 / 2)+[(2Ze²/λmₑv₂(e1))(lnχ(1)-ln2(4/3))],其中χ(1)≡2mₑv(e1)λ/h-bar,mₑ是电子质量,v(e1)≡(7kBT/mₑ)^(1/2),k₈是玻尔兹曼常数,T是温度,λ是屏蔽长度,h-bar是普朗克常数除以2π,e是电子电荷的绝对值。当等离子体德拜长度λ(D)大于离子球半径a时,我们假设λ = λ(D);否则我们设λ = a。当Z≥1、Θ≥2且Γ/Z≤1时,B = 0时的电导率与测量结果一致,并且在这个参数范围内似乎比以前的解析模型更精确。当Z≥1、Θ≥2且Γ/Z≤1时,lnΛ(1)的最小值为1.9。对于电阻率张量(B≠0)得到的表达式预测,η(⊥)/η(∥)(其中η(⊥)和η(∥)分别是垂直和平行于磁场的电阻率)可能比以前的解析计算结果小多达40%。这些结果被应用于一个理想化的17兆安z箍缩停滞时的情况。