Clayton Richard H, Holden Arun V
School of Biomedical Sciences, Worsley Building, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
Physiol Meas. 2002 Nov;23(4):707-26. doi: 10.1088/0967-3334/23/4/310.
Ventricular arrhythmias remain an important cause of morbidity and mortality in the Western world. Although the underlying mechanisms of these arrhythmias can be studied experimentally, these investigations are in general limited to mapping electrical activity on the heart surface. Computational models of action potential propagation offer a potentially powerful way to study electrical activation and arrhythmias, but current models are not easy to link to the clinical environment. In this paper, we describe a framework for computing action potential propagation in which the geometry, electrophysiology and regional properties of ventricular myocardium can be specified so that, for example, different models for cardiac cellular electrophysiology can be used. We have computed action potential propagation during both normal beats and re-entry in an anatomically accurate model of ventricular geometry. By computing the resultant electric current flow in the torso we have also generated simulated ECG signals that result from specific activation patterns in the ventricular model. Models can be powerful tools for explaining observations, and this approach is able to provide a direct link between the different configurations of re-entry observed in computational and experimental studies, and the ECG signals observed in patients.
在西方世界,室性心律失常仍然是发病和死亡的重要原因。尽管这些心律失常的潜在机制可以通过实验进行研究,但这些研究一般仅限于绘制心脏表面的电活动。动作电位传播的计算模型为研究电激活和心律失常提供了一种潜在的强大方法,但目前的模型不容易与临床环境联系起来。在本文中,我们描述了一个计算动作电位传播的框架,在这个框架中,可以指定心室心肌的几何形状、电生理学和区域特性,例如,可以使用不同的心脏细胞电生理学模型。我们已经在一个解剖学上精确的心室几何模型中计算了正常搏动和折返期间的动作电位传播。通过计算躯干中产生的电流,我们还生成了由心室模型中特定激活模式产生的模拟心电图信号。模型可以是解释观察结果的强大工具,这种方法能够在计算和实验研究中观察到的不同折返构型与患者观察到的心电图信号之间提供直接联系。