Suppr超能文献

三维虚拟人心脏左房:研究临床心房颤动的计算平台。

3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

机构信息

Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester M139PL, UK.

出版信息

Prog Biophys Mol Biol. 2011 Oct;107(1):156-68. doi: 10.1016/j.pbiomolbio.2011.06.011. Epub 2011 Jul 7.

Abstract

Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and AF arrhythmogenesis. Results of such simulations can be directly compared with electrophysiological and endocardial mapping data, as well as clinical ECG recordings. The virtual human atria can provide in-depth insights into 3D excitation propagation processes within atrial walls of a whole heart in vivo, which is beyond the current technical capabilities of experimental or clinical set-ups.

摘要

尽管有大量关于离子、细胞和组织基础的实验和临床数据,但源自整个心房水平功能相互作用的常见房性心律失常(如心房颤动,AF)的机制仍不清楚。计算建模为整合此类多尺度数据提供了一个定量框架,并有助于理解从心脏所有部位的集体时空动力学中产生的心律失常行为。在这项研究中,我们为人类心房开发了一个多层次的生物物理详细计算模型——三维虚拟人类心房。首先,对人体窦房结(SAN)和周围心房组织的组织几何形状和纤维方向进行扩散张量 MRI 重建,然后将其整合到从可视人体数据集剖分的整个心房的 3D 模型中。解剖模型与非均匀心房动作电位(AP)模型相结合,用于模拟各种条件下的人类心房中的 AP 传导:SAN 起搏和正常节律下的心房激活、快速心房起搏时规则 AP 波阵面的破裂、以及 AF 特征的多个折返小波的产生。研究了组织不同特性对正常节律和心律失常发生机制的贡献。首先,模拟结果表明,组织异质性导致在快速起搏率下正常 AP 波阵面的破裂,从而引发一对折返螺旋波;组织各向异性导致螺旋波进一步破裂为 AF 特征的多个蜿蜒小波。3D 虚拟心房模型本身被纳入体模,以模拟正常和心律失常条件下的体表心电图模式。因此,开发了一个最先进的计算平台,可用于研究心房传导和 AF 心律失常发生期间的多尺度电现象。此类模拟的结果可以直接与电生理和心内膜标测数据以及临床 ECG 记录进行比较。虚拟人类心房可以深入了解体内整个心脏心房壁内的 3D 兴奋传播过程,这超出了实验或临床设置的当前技术能力。

相似文献

1
3D virtual human atria: A computational platform for studying clinical atrial fibrillation.
Prog Biophys Mol Biol. 2011 Oct;107(1):156-68. doi: 10.1016/j.pbiomolbio.2011.06.011. Epub 2011 Jul 7.
3
Virtual tissue engineering of the human atrium: modelling pharmacological actions on atrial arrhythmogenesis.
Eur J Pharm Sci. 2012 Jul 16;46(4):209-21. doi: 10.1016/j.ejps.2011.08.014. Epub 2011 Aug 24.
4
Arrhythmogenic substrate for atrial fibrillation: insights from an integrative computational model of pulmonary veins.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:203-6. doi: 10.1109/EMBC.2012.6345906.
5
A new algorithm to diagnose atrial ectopic origin from multi lead ECG systems--insights from 3D virtual human atria and torso.
PLoS Comput Biol. 2015 Jan 22;11(1):e1004026. doi: 10.1371/journal.pcbi.1004026. eCollection 2015 Jan.
7
Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation.
PLoS One. 2015 Nov 2;10(11):e0141573. doi: 10.1371/journal.pone.0141573. eCollection 2015.
8
Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern.
Cardiovasc Res. 2016 Jun 1;110(3):443-54. doi: 10.1093/cvr/cvw073. Epub 2016 Apr 7.
9
Pro-arrhythmogenic effects of the S140G KCNQ1 mutation in human atrial fibrillation - insights from modelling.
J Physiol. 2012 Sep 15;590(18):4501-14. doi: 10.1113/jphysiol.2012.229146. Epub 2012 Apr 16.

引用本文的文献

2
Multiplatform modeling of atrial fibrillation identifies phospholamban as a central regulator of cardiac rhythm.
Dis Model Mech. 2023 Jul 1;16(7). doi: 10.1242/dmm.049962. Epub 2023 Jul 17.
3
Cardiac biophysical detailed synergetic modality rendering and visible correlation.
Front Physiol. 2023 Apr 7;14:1086154. doi: 10.3389/fphys.2023.1086154. eCollection 2023.
5
Fiber Organization Has Little Effect on Electrical Activation Patterns During Focal Arrhythmias in the Left Atrium.
IEEE Trans Biomed Eng. 2023 May;70(5):1611-1621. doi: 10.1109/TBME.2022.3223063. Epub 2023 Apr 20.
6
How synergy between mechanistic and statistical models is impacting research in atrial fibrillation.
Front Physiol. 2022 Aug 30;13:957604. doi: 10.3389/fphys.2022.957604. eCollection 2022.
7
Cellular heterogeneity and repolarisation across the atria: an in silico study.
Med Biol Eng Comput. 2022 Nov;60(11):3153-3168. doi: 10.1007/s11517-022-02640-x. Epub 2022 Sep 15.
8
Interactive 3D Human Heart Simulations on Segmented Human MRI Hearts.
Comput Cardiol (2010). 2021 Sep;48. doi: 10.23919/cinc53138.2021.9662948. Epub 2022 Jan 10.
9
Identifying locations susceptible to micro-anatomical reentry using a spatial network representation of atrial fibre maps.
PLoS One. 2022 Jun 23;17(6):e0267166. doi: 10.1371/journal.pone.0267166. eCollection 2022.

本文引用的文献

1
Computer three-dimensional anatomical reconstruction of the human sinus node and a novel paranodal area.
Anat Rec (Hoboken). 2011 Jun;294(6):970-9. doi: 10.1002/ar.21379. Epub 2011 Apr 28.
2
Models of cardiac tissue electrophysiology: progress, challenges and open questions.
Prog Biophys Mol Biol. 2011 Jan;104(1-3):22-48. doi: 10.1016/j.pbiomolbio.2010.05.008. Epub 2010 May 27.
3
Differences in atrial fibrillation properties under vagal nerve stimulation versus atrial tachycardia remodeling.
Heart Rhythm. 2009 Oct;6(10):1465-72. doi: 10.1016/j.hrthm.2009.07.034. Epub 2009 Jul 21.
4
Novel approaches for pharmacological management of atrial fibrillation.
Drugs. 2009;69(7):757-74. doi: 10.2165/00003495-200969070-00001.
5
Atrial fibrillation and heart failure: treatment considerations for a dual epidemic.
Circulation. 2009 May 12;119(18):2516-25. doi: 10.1161/CIRCULATIONAHA.108.821306.
7
Simulating the effects of atrial fibrillation induced electrical remodeling: a comprehensive simulation study.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:593-6. doi: 10.1109/IEMBS.2008.4649222.
8
Properties of two human atrial cell models in tissue: restitution, memory, propagation, and reentry.
J Theor Biol. 2008 Oct 7;254(3):674-90. doi: 10.1016/j.jtbi.2008.06.030. Epub 2008 Jul 4.
9
Dynamics of human atrial cell models: restitution, memory, and intracellular calcium dynamics in single cells.
Prog Biophys Mol Biol. 2008 Sep;98(1):24-37. doi: 10.1016/j.pbiomolbio.2008.05.002. Epub 2008 May 29.
10
The importance of atrial structure and fibers.
Clin Anat. 2009 Jan;22(1):52-63. doi: 10.1002/ca.20634.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验