Suppr超能文献

水蛭心脏中间神经元的爆发式活动:细胞自主机制和基于网络的机制。

Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms.

作者信息

Cymbalyuk Gennady S, Gaudry Quentin, Masino Mark A, Calabrese Ronald L

机构信息

Biology Department, Emory University, Atlanta, Georgia 30322, USA.

出版信息

J Neurosci. 2002 Dec 15;22(24):10580-92. doi: 10.1523/JNEUROSCI.22-24-10580.2002.

Abstract

Rhythmic activity within the heartbeat pattern generator of the medicinal leech is based on the alternating bursting of mutually inhibitory pairs of oscillator heart interneurons (half-center oscillators). Bicuculline methiodide has been shown to block mutual inhibition between these interneurons and to cause them to spike tonically while recorded intracellularly (Schmidt and Calabrese, 1992). Using extracellular recording techniques, we show here that oscillator and premotor heart interneurons continue to burst when pharmacologically isolated with bicuculline, although the bursting is not robust in some preparations. We propose that a nonspecific leak current introduced by the intracellular microelectrode suppresses endogenous bursting activity to account for the discrepancy with results using intracellular recording. A two-parameter bifurcation diagram (E(leak) vs g(leak)) of a mathematical model of a single heart interneuron shows a narrow stripe of parameter values where bursting occurs, separating large zones of tonic spiking and silence. A similar analysis performed for a half-center oscillator model outlined a much larger area of bursting. Bursting in the half-center oscillator model is also less sensitive to variation in the maximal conductances of voltage-gated currents than in the single-neuron model. Thus, in addition to ensuring appropriate bursting characteristics such as period, phase, and duty cycles, the half-center configuration enhances oscillation robustness, making them less susceptible to random or imposed changes in membrane parameters. Endogenous bursting, in turn, ensures appropriate bursting if the strength of mutual inhibition is weakened and limits the minimum period of the half-center oscillator to a period near that of the single neuron.

摘要

药用水蛭心跳模式发生器中的节律性活动基于相互抑制的振荡性心脏中间神经元对(半中枢振荡器)的交替爆发。已证明荷包牡丹碱甲碘化物可阻断这些中间神经元之间的相互抑制,并在细胞内记录时使它们产生强直性放电(施密特和卡拉布雷斯,1992年)。在这里,我们使用细胞外记录技术表明,当用荷包牡丹碱进行药理学隔离时,振荡性和运动前心脏中间神经元会继续爆发,尽管在某些标本中爆发并不强烈。我们提出,细胞内微电极引入的非特异性泄漏电流会抑制内源性爆发活动,以解释与细胞内记录结果的差异。单个心脏中间神经元数学模型的双参数分岔图(E(leak) 与 g(leak))显示了一个狭窄的参数值条带,在该条带处会发生爆发,将强直性放电和静息的大区域分隔开。对一个半中枢振荡器模型进行的类似分析勾勒出了一个大得多的爆发区域。与单个神经元模型相比,半中枢振荡器模型中的爆发对电压门控电流的最大电导变化也不太敏感。因此,除了确保适当的爆发特征,如周期、相位和占空比外,半中枢配置还增强了振荡的稳健性,使其更不易受到膜参数随机或强加变化的影响。反过来,如果相互抑制的强度减弱,内源性爆发会确保适当的爆发,并将半中枢振荡器的最短周期限制在接近单个神经元的周期。

相似文献

1
Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms.
J Neurosci. 2002 Dec 15;22(24):10580-92. doi: 10.1523/JNEUROSCI.22-24-10580.2002.
2
Myomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons.
J Neurophysiol. 2005 Dec;94(6):3938-50. doi: 10.1152/jn.00340.2005. Epub 2005 Aug 10.
3
Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.
J Neurophysiol. 2006 Dec;96(6):2857-67. doi: 10.1152/jn.00582.2006. Epub 2006 Aug 30.
4
Model of intersegmental coordination in the leech heartbeat neuronal network.
J Neurophysiol. 2002 Mar;87(3):1586-602. doi: 10.1152/jn.00337.2001.
6
Modulation of spike-mediated synaptic transmission by presynaptic background Ca2+ in leech heart interneurons.
J Neurosci. 2003 Feb 15;23(4):1206-18. doi: 10.1523/JNEUROSCI.23-04-01206.2003.

引用本文的文献

1
Multistability of bursting rhythms in a half-center oscillator and the protective effects of synaptic inhibition.
Front Cell Neurosci. 2024 Sep 17;18:1395026. doi: 10.3389/fncel.2024.1395026. eCollection 2024.
2
Contribution of membrane-associated oscillators to biological timing at different timescales.
Front Physiol. 2024 Jan 9;14:1243455. doi: 10.3389/fphys.2023.1243455. eCollection 2023.
3
Bursting Dynamics Based on the Persistent Na and Na/K Pump Currents: A Dynamic Clamp Approach.
eNeuro. 2023 Aug 18;10(8). doi: 10.1523/ENEURO.0331-22.2023. Print 2023 Aug.
4
Unveiling the capabilities of bipolar conical channels in neuromorphic iontronics.
Faraday Discuss. 2023 Oct 12;246(0):125-140. doi: 10.1039/d3fd00022b.
5
Neuromodulation Enables Temperature Robustness and Coupling Between Fast and Slow Oscillator Circuits.
Front Cell Neurosci. 2022 Mar 28;16:849160. doi: 10.3389/fncel.2022.849160. eCollection 2022.
6
New in Paced One-Dimensional Excitable Systems.
Front Physiol. 2022 Mar 23;13:854887. doi: 10.3389/fphys.2022.854887. eCollection 2022.
7
Bursting emerges from the complementary roles of neurons in a four-cell network.
J Neurophysiol. 2022 Apr 1;127(4):1054-1066. doi: 10.1152/jn.00017.2022. Epub 2022 Mar 23.
8
Mapping circuit dynamics during function and dysfunction.
Elife. 2022 Mar 18;11:e76579. doi: 10.7554/eLife.76579.
9
Neuropeptide Modulation Increases Dendritic Electrical Spread to Restore Neuronal Activity Disrupted by Temperature.
J Neurosci. 2021 Sep 8;41(36):7607-7622. doi: 10.1523/JNEUROSCI.0101-21.2021. Epub 2021 Jul 28.

本文引用的文献

1
Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator.
Science. 1985 Jul 26;229(4711):402-4. doi: 10.1126/science.229.4711.402.
3
Theta oscillations in the hippocampus.
Neuron. 2002 Jan 31;33(3):325-40. doi: 10.1016/s0896-6273(02)00586-x.
4
A model of a segmental oscillator in the leech heartbeat neuronal network.
J Comput Neurosci. 2001 May-Jun;10(3):281-302. doi: 10.1023/a:1011216131638.
6
Oscillatory model of novelty detection.
Network. 2001 Feb;12(1):1-20.
7
The roles of co-transmission in neural network modulation.
Trends Neurosci. 2001 Mar;24(3):146-54. doi: 10.1016/s0166-2236(00)01723-9.
8
The development of neuromodulatory systems and the maturation of motor patterns in amphibian tadpoles.
Brain Res Bull. 2000 Nov 15;53(5):595-603. doi: 10.1016/s0361-9230(00)00393-2.
9
Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons.
J Neurosci. 2000 Nov 15;20(22):8493-503. doi: 10.1523/JNEUROSCI.20-22-08493.2000.
10
Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit.
J Neurophysiol. 1999 Jul;82(1):115-22. doi: 10.1152/jn.1999.82.1.115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验