Lew Ala E, Gale Kevin R, Minchin Catherine M, Shkap Varda, de Waal D Theo
Department of Primary Industries, Agency for Food and Fibre Sciences, c/o Animal Research Institute, 665 Fairfield Rd., Locked Mail Bag No. 4, Yeerongpilly, Moorooka, Queensland 4105, Australia.
Vet Microbiol. 2003 Mar 20;92(1-2):145-60. doi: 10.1016/s0378-1135(02)00352-8.
Phenotypic criteria for the identification of erythrocytic ruminant Anaplasma species has relied on subjective identification methods such as host pathogenicity (virulence for cattle or sheep) and/or the location of Anaplasma inclusion bodies within the host's red cells. Sequence comparisons of new and available GenBank Accessions were investigated to elucidate the relationships among these closely related Anaplasma species. Twenty-one 16S rDNA and GroEL (HSP60) sequences from 13 Anaplasma marginale (South Africa, Namibia, Zimbabwe, Israel, USA, Australia and Uruguay), three A. centrale (South Africa and Japan), two A. ovis (USA and South Africa), and two unknown Anaplasma species isolated from wild ruminants (South Africa), were compared. 16S rDNA maximum-likelihood and distance trees separated all A. marginale (and the two wild ruminant isolates) from the two South African A. centrale (including original vaccine strain, Theiler, 1911). The Japanese A. centrale (Aomori) demonstrated the lowest sequence identity to the remaining erythrocytic Anaplasma species. A. ovis inter-species relationships could not be resolved through the 16S rDNA analyses, whereas strong bootstrap branch support is demonstrated in the GroEL distance tree using A. ovis OVI strain. All erythrocytic Anaplasma species and isolates were confirmed to belong to the same cluster showing strong branch support to Anaplasma (Ehrlichia) phagocytophilum with Ehrlichia (Cowdria) ruminantium and Rickettsia rickettsii serving as appropriate out-groups. Based on groEL sequences, a specific PCR method was developed which amplified A. centrale vaccine (Theiler, 1911) specifically. This study confirms the suitability of 16S rDNA sequences to define genera and demonstrates the usefulness of GroEL sequences for defining species of erythrocytic Anaplasma.
用于鉴定反刍动物红细胞无形体物种的表型标准一直依赖于主观鉴定方法,如宿主致病性(对牛或羊的毒力)和/或无形体包涵体在宿主红细胞内的位置。对新的和现有的GenBank登录号进行序列比较,以阐明这些密切相关的无形体物种之间的关系。比较了来自13株边缘无形体(南非、纳米比亚、津巴布韦、以色列、美国、澳大利亚和乌拉圭)、3株中央无形体(南非和日本)、2株绵羊无形体(美国和南非)以及从野生反刍动物分离出的2株未知无形体物种(南非)的21条16S rDNA和GroEL(HSP60)序列。16S rDNA最大似然树和距离树将所有边缘无形体(以及两株野生反刍动物分离株)与两株南非中央无形体(包括原始疫苗株,泰勒,1911年)区分开来。日本中央无形体(青森)与其余红细胞无形体物种的序列同一性最低。通过16S rDNA分析无法解析绵羊无形体种间关系,而在使用绵羊无形体OVI株的GroEL距离树中显示出强大的自展分支支持。所有红细胞无形体物种和分离株均被证实属于同一聚类,对嗜吞噬无形体(埃立克体)显示出强大的分支支持,而反刍动物埃立克体(考德里体)和立氏立克次体作为合适的外类群。基于groEL序列,开发了一种特异性PCR方法,可特异性扩增中央无形体疫苗(泰勒,1911年)。本研究证实了16S rDNA序列用于定义属的适用性,并证明了GroEL序列用于定义红细胞无形体物种的有用性。