Suppr超能文献

朝着基因组选择与作物模型的整合迈进:开发一种预测水稻抽穗期的综合方法。

Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates.

机构信息

Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.

Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan.

出版信息

Theor Appl Genet. 2016 Apr;129(4):805-817. doi: 10.1007/s00122-016-2667-5. Epub 2016 Jan 20.

Abstract

It is suggested that accuracy in predicting plant phenotypes can be improved by integrating genomic prediction with crop modelling in a single hierarchical model. Accurate prediction of phenotypes is important for plant breeding and management. Although genomic prediction/selection aims to predict phenotypes on the basis of whole-genome marker information, it is often difficult to predict phenotypes of complex traits in diverse environments, because plant phenotypes are often influenced by genotype-environment interaction. A possible remedy is to integrate genomic prediction with crop/ecophysiological modelling, which enables us to predict plant phenotypes using environmental and management information. To this end, in the present study, we developed a novel method for integrating genomic prediction with phenological modelling of Asian rice (Oryza sativa, L.), allowing the heading date of untested genotypes in untested environments to be predicted. The method simultaneously infers the phenological model parameters and whole-genome marker effects on the parameters in a Bayesian framework. By cultivating backcross inbred lines of Koshihikari × Kasalath in nine environments, we evaluated the potential of the proposed method in comparison with conventional genomic prediction, phenological modelling, and two-step methods that applied genomic prediction to phenological model parameters inferred from Nelder-Mead or Markov chain Monte Carlo algorithms. In predicting heading dates of untested lines in untested environments, the proposed and two-step methods tended to provide more accurate predictions than the conventional genomic prediction methods, particularly in environments where phenotypes from environments similar to the target environment were unavailable for training genomic prediction. The proposed method showed greater accuracy in prediction than the two-step methods in all cross-validation schemes tested, suggesting the potential of the integrated approach in the prediction of phenotypes of plants.

摘要

建议通过在单一层次模型中将基因组预测与作物模型结合起来,提高预测植物表型的准确性。准确预测表型对于植物育种和管理很重要。虽然基因组预测/选择旨在根据全基因组标记信息预测表型,但通常难以预测复杂性状在不同环境中的表型,因为植物表型通常受到基因型-环境互作的影响。一种可能的补救方法是将基因组预测与作物/生理模型相结合,从而能够利用环境和管理信息来预测植物表型。为此,在本研究中,我们开发了一种新的方法,将基因组预测与亚洲水稻(Oryza sativa,L.)物候建模相结合,从而可以预测未测试环境中未测试基因型的抽穗期。该方法在贝叶斯框架下同时推断物候模型参数和全基因组标记对参数的影响。通过在九个环境中种植 Koshihikari×Kasalath 的回交自交系,我们评估了与传统基因组预测、物候建模以及应用基因组预测到从 Nelder-Mead 或马尔可夫链蒙特卡罗算法推断的物候模型参数的两步法相比,所提出方法的潜力。在预测未测试环境中未测试系的抽穗期时,与传统的基因组预测方法相比,所提出的方法和两步法往往提供更准确的预测,特别是在没有目标环境相似环境的表型用于训练基因组预测的环境中。在所测试的所有交叉验证方案中,所提出的方法比两步法的预测精度都更高,这表明了该综合方法在预测植物表型方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验