Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
Plant Biotechnol J. 2020 Jul;18(7):1507-1525. doi: 10.1111/pbi.13372. Epub 2020 May 19.
Genotyping-by-sequencing has enabled approaches for genomic selection to improve yield, stress resistance and nutritional value. More and more resource studies are emerging providing 1000 and more genotypes and millions of SNPs for one species covering a hitherto inaccessible intraspecific genetic variation. The larger the databases are growing, the better statistical approaches for genomic selection will be available. However, there are clear limitations on the statistical but also on the biological part. Intraspecific genetic variation is able to explain a high proportion of the phenotypes, but a large part of phenotypic plasticity also stems from environmentally driven transcriptional, post-transcriptional, translational, post-translational, epigenetic and metabolic regulation. Moreover, regulation of the same gene can have different phenotypic outputs in different environments. Consequently, to explain and understand environment-dependent phenotypic plasticity based on the available genotype variation we have to integrate the analysis of further molecular levels reflecting the complete information flow from the gene to metabolism to phenotype. Interestingly, metabolomics platforms are already more cost-effective than NGS platforms and are decisive for the prediction of nutritional value or stress resistance. Here, we propose three fundamental pillars for future breeding strategies in the framework of Green Systems Biology: (i) combining genome selection with environment-dependent PANOMICS analysis and deep learning to improve prediction accuracy for marker-dependent trait performance; (ii) PANOMICS resolution at subtissue, cellular and subcellular level provides information about fundamental functions of selected markers; (iii) combining PANOMICS with genome editing and speed breeding tools to accelerate and enhance large-scale functional validation of trait-specific precision breeding.
基于测序的基因分型使得基因组选择方法得以改进,从而提高产量、增强抗逆性和改善营养价值。越来越多的资源研究正在涌现,为一个物种提供了 1000 多个基因型和数百万个 SNP,涵盖了迄今为止无法获得的种内遗传变异。数据库越大,基因组选择的统计方法就越好。然而,在统计方面和生物学方面都存在明显的局限性。种内遗传变异能够解释很大一部分表型,但很大一部分表型可塑性也源于环境驱动的转录、转录后、翻译、翻译后、表观遗传和代谢调控。此外,同一基因的调控在不同环境中可能会产生不同的表型输出。因此,要基于可用的基因型变异来解释和理解依赖于环境的表型可塑性,我们必须整合进一步的分子水平分析,反映从基因到代谢到表型的完整信息流。有趣的是,代谢组学平台已经比 NGS 平台更具成本效益,并且对预测营养价值或抗逆性具有决定性意义。在这里,我们在绿色系统生物学框架内提出了未来育种策略的三个基本支柱:(i) 将基因组选择与依赖环境的 PANOMICS 分析和深度学习相结合,以提高对标记依赖性性状表现的预测准确性;(ii) 亚组织、细胞和亚细胞水平的 PANOMICS 分辨率提供了关于所选标记基本功能的信息;(iii) 将 PANOMICS 与基因组编辑和快速育种工具相结合,以加速和增强针对特定性状的精确育种的大规模功能验证。