Block Steven M, Asbury Charles L, Shaevitz Joshua W, Lang Matthew J
Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2351-6. doi: 10.1073/pnas.0436709100. Epub 2003 Feb 18.
With every step it takes, the kinesin motor undergoes a mechanochemical reaction cycle that includes the hydrolysis of one ATP molecule, ADPP(i) release, plus an unknown number of additional transitions. Kinesin velocity depends on both the magnitude and the direction of the applied load. Using specialized apparatus, we subjected single kinesin molecules to forces in differing directions. Sideways and forward loads up to 8 pN exert only a weak effect, whereas comparable forces applied in the backward direction lead to stall. This strong directional bias suggests that the primary working stroke is closely aligned with the microtubule axis. Sideways loads slow the motor asymmetrically, but only at higher ATP levels, revealing the presence of additional, load-dependent transitions late in the cycle. Fluctuation analysis shows that the cycle contains at least four transitions, and confirms that hydrolysis remains tightly coupled to stepping. Together, our findings pose challenges for models of kinesin motion.
驱动蛋白每走一步都会经历一个机械化学反应循环,该循环包括一个ATP分子的水解、ADP和无机磷酸的释放,以及数量未知的其他转变。驱动蛋白的速度取决于所施加负载的大小和方向。我们使用专门的仪器,使单个驱动蛋白分子受到不同方向的力。高达8皮牛的侧向力和向前的力只会产生微弱的影响,而向后施加的同等大小的力则会导致驱动蛋白停止运动。这种强烈的方向偏差表明,主要的工作冲程与微管轴紧密对齐。侧向力会不对称地减缓驱动蛋白的运动,但仅在较高的ATP水平下才会如此,这表明在循环后期存在额外的、依赖于负载的转变。波动分析表明,该循环至少包含四个转变,并证实水解与步移仍紧密耦合。我们的研究结果共同对驱动蛋白运动模型提出了挑战。