Chen Sixue, Glawischnig Erich, Jørgensen Kirsten, Naur Peter, Jørgensen Bodil, Olsen Carl-Erik, Hansen Carsten H, Rasmussen Hasse, Pickett John A, Halkier Barbara A
Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, Copenhagen, Denmark.
Plant J. 2003 Mar;33(5):923-37. doi: 10.1046/j.1365-313x.2003.01679.x.
Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.
细胞色素P450家族中的CYP79在硫代葡萄糖苷生物合成过程中催化氨基酸转化为肟,硫代葡萄糖苷是一类天然植物产物,已知参与植物防御,并作为风味化合物、防癌剂和生物除草剂的来源。我们报告了对拟南芥中参与脂肪族硫代葡萄糖苷生物合成的两种细胞色素P450,即CYP79F1和CYP79F2的底物特异性和动力学的详细生化分析。分别使用在大肠杆菌和酿酒酵母中表达的重组CYP79F1和CYP79F2,我们发现CYP79F1将一到六高蛋氨酸代谢,产生短链和长链脂肪族硫代葡萄糖苷。相比之下,CYP79F2仅代谢长链延长的五高蛋氨酸和六高蛋氨酸。CYP79F1和CYP79F2在空间和发育上受到调控,具有不同的基因表达模式。CYP79F2在胚轴和根中高表达,而CYP79F1在子叶、莲座叶、茎和角果中强烈表达。一个转座子标签的CYP79F1敲除突变体完全缺乏短链脂肪族硫代葡萄糖苷,但长链脂肪族硫代葡萄糖苷水平增加,尤其是在叶片和种子中。一个转座子标签的CYP79F2敲除突变体中长链脂肪族硫代葡萄糖苷水平大幅降低,而短链脂肪族硫代葡萄糖苷水平不受影响。CYP79F1和CYP79F2的生化特性以及基因表达分析,结合敲除突变体的硫代葡萄糖苷谱分析,证明了这些酶的功能作用。这为导致脂肪族硫代葡萄糖苷生物合成的代谢网络以及改变脂肪族硫代葡萄糖苷谱以提高营养价值和抗虫性的代谢工程提供了有价值的见解。