Schmidt Marius, Rajagopal Sudarshan, Ren Zhong, Moffat Keith
Physik-Department E17, Technische Universitaet Muenchen, 85747 Garching, Germany.
Biophys J. 2003 Mar;84(3):2112-29. doi: 10.1016/S0006-3495(03)75018-8.
Singular value decomposition (SVD) is a technique commonly used in the analysis of spectroscopic data that both acts as a noise filter and reduces the dimensionality of subsequent least-squares fits. To establish the applicability of SVD to crystallographic data, we applied SVD to calculated difference Fourier maps simulating those to be obtained in a time-resolved crystallographic study of photoactive yellow protein. The atomic structures of one dark state and three intermediates were used in qualitatively different kinetic mechanisms to generate time-dependent difference maps at specific time points. Random noise of varying levels in the difference structure factor amplitudes, different extents of reaction initiation, and different numbers of time points were all employed to simulate a range of realistic experimental conditions. Our results show that SVD allows for an unbiased differentiation between signal and noise; a small subset of singular values and vectors represents the signal well, reducing the random noise in the data. Due to this, phase information of the difference structure factors can be obtained. After identifying and fitting a kinetic mechanism, the time-independent structures of the intermediates could be recovered. This demonstrates that SVD will be a powerful tool in the analysis of experimental time-resolved crystallographic data.
奇异值分解(SVD)是光谱数据分析中常用的一种技术,它既可以作为噪声滤波器,又能降低后续最小二乘拟合的维度。为了确定SVD在晶体学数据中的适用性,我们将SVD应用于计算得到的差分傅里叶图,这些图模拟了在光活性黄色蛋白的时间分辨晶体学研究中将要获得的图。一个暗态和三个中间体的原子结构被用于性质不同的动力学机制中,以在特定时间点生成随时间变化的差分图。在差分结构因子振幅中加入不同水平的随机噪声、不同程度的反应起始以及不同数量的时间点,所有这些都用于模拟一系列实际的实验条件。我们的结果表明,SVD能够对信号和噪声进行无偏区分;一小部分奇异值和向量能很好地表示信号,减少数据中的随机噪声。因此,可以获得差分结构因子的相位信息。在识别并拟合动力学机制后,可以恢复中间体的与时间无关的结构。这表明SVD将成为分析实验时间分辨晶体学数据的有力工具。