Asojo Oluwatoyin A, Gulnik Sergei V, Afonina Elena, Yu Betty, Ellman Jonathan A, Haque Tasir S, Silva Abelardo M
Structural Biochemistry Program, National Cancer Institute/SAIC, Frederick, MD 21702, USA.
J Mol Biol. 2003 Mar 14;327(1):173-81. doi: 10.1016/s0022-2836(03)00036-6.
Malaria remains a human disease of global significance and a major cause of high infant mortality in endemic nations. Parasites of the genus Plasmodium cause the disease by degrading human hemoglobin as a source of amino acids for their growth and maturation. Hemoglobin degradation is initiated by aspartic proteases, termed plasmepsins, with a cleavage at the alpha-chain between residues Phe33 and Leu34. Plasmepsin II is one of the four catalytically active plasmepsins that has been identified in the food vacuole of Plasmodium falciparum. Novel crystal structures of uncomplexed plasmepsin II as well as the complex with a potent inhibitor have been refined with data extending to resolution limits of 1.9A and 2.7A, and to R factors of 17% and 18%, respectively. The inhibitor, N-(3-[(2-benzo[1,3]dioxol-5-yl-ethyl)[3-(1-methyl-3-oxo-1,3-dihydro-isoindol-2-yl)-propionyl]-amino]-1-benzyl-2-(hydroxypropyl)-4-benzyloxy-3,5-dimethoxy-benzamide, belongs to a family of potent non-peptidic inhibitors that have large P1' groups. Such inhibitors could not be modeled into the binding cavity of the structure of plasmepsin II in complex with pepstatin A. Our structures reveal that the binding cavities of the new complex and uncomplexed plasmepsin II are considerably more open than that of the pepstatin A complex, allowing for larger heterocyclic groups in the P1', P2' and P2 positions. Both complexed and uncomplexed plasmepsin II crystallized in space group P2, with one monomer in the asymmetric unit. The structures show extensive interlocking of monomers around the crystallographic axis of symmetry, with areas in excess of 2300A(2) buried at the interface, and a loop of one monomer interacting with the binding cavity of the 2-fold related monomer. Electron density for this loop is only fully ordered in the complexed structure.
疟疾仍然是一种具有全球重要性的人类疾病,也是疟疾流行国家婴儿高死亡率的主要原因。疟原虫属的寄生虫通过降解人类血红蛋白作为其生长和成熟的氨基酸来源来引发疾病。血红蛋白的降解由天冬氨酸蛋白酶(称为疟原虫天冬氨酸蛋白酶)启动,在α链的Phe33和Leu34残基之间发生切割。疟原虫天冬氨酸蛋白酶II是在恶性疟原虫食物泡中已鉴定出的四种具有催化活性的疟原虫天冬氨酸蛋白酶之一。未复合的疟原虫天冬氨酸蛋白酶II以及与一种强效抑制剂的复合物的新晶体结构已通过数据进行了优化,数据延伸至1.9埃和2.7埃的分辨率极限,R因子分别为17%和18%。该抑制剂,N-(3-[(2-苯并[1,3]二氧杂环戊烯-5-基-乙基)[3-(1-甲基-3-氧代-1,3-二氢-异吲哚-2-基)-丙酰基]-氨基]-1-苄基-2-(羟丙基)-4-苄氧基-3,5-二甲氧基-苯甲酰胺,属于一类具有大P1'基团的强效非肽类抑制剂。此类抑制剂无法模拟到与胃蛋白酶抑制剂A复合的疟原虫天冬氨酸蛋白酶II结构的结合腔中。我们的结构表明,新复合物和未复合的疟原虫天冬氨酸蛋白酶II的结合腔比与胃蛋白酶抑制剂A复合物的结合腔明显更开放,允许P1'、P2'和P2位置有更大的杂环基团。复合和未复合的疟原虫天冬氨酸蛋白酶II均在空间群P2中结晶,不对称单元中有一个单体。结构显示单体围绕晶体学对称轴广泛互锁,界面处埋藏面积超过2300埃²,一个单体的环与2倍相关单体的结合腔相互作用。该环的电子密度仅在复合结构中完全有序。