Suppr超能文献

学习将世界感知为有结构的:一种感觉运动系统中的分层学习方法。

Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems.

作者信息

Tani J, Nolfi S

机构信息

Sony Computer Science Laboratory Inc., Takanawa Muse Building, 3-14-13 Higashi-gotanda, Shinagawa-ku, Tokyo, Japan

出版信息

Neural Netw. 1999 Oct;12(7-8):1131-1141. doi: 10.1016/s0893-6080(99)00060-x.

Abstract

This paper describes how agents can learn an internal model of the world structurally by focusing on the problem of behavior-based articulation. We develop an on-line learning scheme-the so-called mixture of recurrent neural net (RNN) experts-in which a set of RNN modules become self-organized as experts on multiple levels, in order to account for the different categories of sensory-motor flow which the robot experiences. Autonomous switching of activated modules in the lower level actually represents the articulation of the sensory-motor flow. In the meantime, a set of RNNs in the higher level competes to learn the sequences of module switching in the lower level, by which articulation at a further, more abstract level can be achieved. The proposed scheme was examined through simulation experiments involving the navigation learning problem. Our dynamical system analysis clarified the mechanism of the articulation. The possible correspondence between the articulation mechanism and the attention switching mechanism in thalamo-cortical loops is also discussed.

摘要

本文描述了智能体如何通过关注基于行为的表达问题来从结构上学习世界的内部模型。我们开发了一种在线学习方案——所谓的递归神经网络(RNN)专家混合模型,其中一组RNN模块在多个层次上自组织为专家,以解释机器人所经历的不同类别的感觉运动流。较低层次中激活模块的自主切换实际上代表了感觉运动流的表达。与此同时,较高层次中的一组RNN竞争学习较低层次中模块切换的序列,借此可以在更深层次、更抽象的层面上实现表达。通过涉及导航学习问题的模拟实验对所提出的方案进行了检验。我们的动态系统分析阐明了表达的机制。还讨论了表达机制与丘脑 - 皮质环路中注意力切换机制之间可能的对应关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验