Suppr超能文献

一种用于闭锁综合征患者的脑机接口(BCI):思维转换设备中不同脑电图分类方法的比较。

A brain-computer interface (BCI) for the locked-in: comparison of different EEG classifications for the thought translation device.

作者信息

Hinterberger Thilo, Kübler Andrea, Kaiser Jochen, Neumann Nicola, Birbaumer Niels

机构信息

Institute of Medical Psychology and Behavioral Neurobiology, Gartenstrasse 29, University of Tübingen, Tubingen, Germany.

出版信息

Clin Neurophysiol. 2003 Mar;114(3):416-25. doi: 10.1016/s1388-2457(02)00411-x.

Abstract

OBJECTIVE

The Thought Translation Device (TTD) for brain-computer interaction was developed to enable totally paralyzed patients to communicate. Patients learn to regulate slow cortical potentials (SCPs) voluntarily with feedback training to select letters. This study reports the comparison of different methods of electroencephalographic (EEG) analysis to improve spelling accuracy with the TTD on a data set of 6,650 trials of a severely paralyzed patient.

METHODS

Selections of letters occurred by exceeding a certain SCP amplitude threshold. To enhance the patient's control of an additional event-related cortical potential, a filter with two filter characteristics ('mixed filter') was developed and applied on-line. To improve performance off-line the criterion for threshold-related decisions was varied. Different types of discriminant analysis were applied to the EEG data set as well as on wavelet transformed EEG data.

RESULTS

The mixed filter condition increased the patients' performance on-line compared to the SCP filter alone. A threshold, based on the ratio between required selections and rejections, resulted in a further improvement off-line. Discriminant analysis of both time-series SCP data and wavelet transformed data increased the patient's correct response rate off-line.

CONCLUSIONS

It is possible to communicate with event-related potentials using the mixed filter feedback method. As wavelet transformed data cannot be fed back on-line before the end of a trial, they are applicable only if immediate feedback is not necessary for a brain-computer interface (BCI). For future BCIs, wavelet transformed data should serve for BCIs without immediate feedback. A stepwise wavelet transformation would even allow immediate feedback.

摘要

目的

开发用于脑机交互的思维翻译设备(TTD),以使完全瘫痪的患者能够进行交流。患者通过反馈训练学会自主调节慢皮层电位(SCP)来选择字母。本研究报告了在一名严重瘫痪患者的6650次试验数据集上,比较不同脑电图(EEG)分析方法以提高TTD拼写准确性的情况。

方法

通过超过一定的SCP幅度阈值来选择字母。为增强患者对另一种事件相关皮层电位的控制,开发了一种具有两种滤波特性的滤波器(“混合滤波器”)并在线应用。为离线提高性能,改变了与阈值相关决策的标准。将不同类型的判别分析应用于EEG数据集以及小波变换后的EEG数据。

结果

与单独使用SCP滤波器相比,混合滤波器条件在线提高了患者的表现。基于所需选择与拒绝之间的比率的阈值在离线时带来了进一步的改善。对时间序列SCP数据和小波变换后的数据进行判别分析,离线提高了患者的正确响应率。

结论

使用混合滤波器反馈方法通过事件相关电位进行通信是可能的。由于小波变换后的数据在试验结束前无法在线反馈,因此仅在脑机接口(BCI)不需要即时反馈时才适用。对于未来的BCI,小波变换后的数据应服务于无需即时反馈的BCI。逐步小波变换甚至可以实现即时反馈。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验