Suppr超能文献

膜蛋白和通道水的介电常数在离子渗透中的作用。

Role of the dielectric constants of membrane proteins and channel water in ion permeation.

作者信息

Baştuğ Turgut, Kuyucak Serdar

机构信息

Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, Canberra, A.C.T. 0200, Australia.

出版信息

Biophys J. 2003 May;84(5):2871-82. doi: 10.1016/S0006-3495(03)70015-0.

Abstract

Using both analytical solutions obtained from simplified systems and numerical results from more realistic cases, we investigate the role played by the dielectric constant of membrane proteins epsilon(p) and pore water epsilon(w) in permeation of ions across channels. We show that the boundary and its curvature are the crucial factors in determining how an ion's potential energy depends on the dielectric constants near an interface. The potential energy of an ion outside a globular protein has a dominant 1/epsilon(w) dependence, but this becomes 1/epsilon(p) for an ion inside a cavity. For channels, where the boundaries are in between these two extremes, the situation is more complex. In general, we find that variations in epsilon(w) have a much larger impact on the potential energy of an ion compared to those in epsilon(p). Therefore a better understanding of the effective epsilon(w) values employed in channel models is desirable. Although the precise value of epsilon(p) is not a crucial determinant of ion permeation properties, it still needs to be chosen carefully when quantitative comparisons with data are made.

摘要

利用从简化系统获得的解析解以及更实际情况的数值结果,我们研究了膜蛋白的介电常数ε(p)和孔中水的介电常数ε(w)在离子跨通道渗透中所起的作用。我们表明,边界及其曲率是决定离子势能如何依赖于界面附近介电常数的关键因素。球状蛋白外部离子的势能主要依赖于1/ε(w),但对于腔内离子而言,这变为1/ε(p)。对于通道,其边界处于这两种极端情况之间,情况更为复杂。一般来说,我们发现与ε(p)的变化相比,ε(w)的变化对离子势能的影响要大得多。因此,更好地理解通道模型中所采用的有效ε(w)值是很有必要的。虽然ε(p)的精确值并非离子渗透特性的关键决定因素,但在与数据进行定量比较时,仍需谨慎选择。

相似文献

1
Role of the dielectric constants of membrane proteins and channel water in ion permeation.
Biophys J. 2003 May;84(5):2871-82. doi: 10.1016/S0006-3495(03)70015-0.
4
The dynamics and energetics of water permeation and proton exclusion in aquaporins.
Curr Opin Struct Biol. 2005 Apr;15(2):176-83. doi: 10.1016/j.sbi.2005.02.003.
5
A fast in silico simulation of ion flux through the large-pore channel proteins.
Biophys J. 2002 Dec;83(6):3001-11. doi: 10.1016/S0006-3495(02)75306-X.
6
Dielectric saturation of water in a membrane protein channel.
Phys Chem Chem Phys. 2009 Jan 14;11(2):358-65. doi: 10.1039/b812775a. Epub 2008 Oct 30.
7
Physical descriptions of experimental selectivity measurements in ion channels.
Eur Biophys J. 2002 Oct;31(6):454-66. doi: 10.1007/s00249-002-0239-x. Epub 2002 Jul 16.
8
Optimizing transport of metabolites through large channels: molecular sieves with and without binding.
Biophys J. 2005 Mar;88(3):L17-9. doi: 10.1529/biophysj.104.057588. Epub 2004 Dec 30.
9
Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels.
Biophys J. 2003 Jun;84(6):3594-606. doi: 10.1016/S0006-3495(03)75091-7.
10
Collective diffusion model for water permeation through microscopic channels.
Phys Rev Lett. 2004 Nov 26;93(22):224501. doi: 10.1103/PhysRevLett.93.224501. Epub 2004 Nov 24.

引用本文的文献

1
A comprehensive computational study of amino acid interactions in membrane proteins.
Sci Rep. 2019 Aug 19;9(1):12043. doi: 10.1038/s41598-019-48541-2.
2
Effect of dielectric interface on charge aggregation in the voltage-gated K(+) ion channel.
J Nat Sci Biol Med. 2015 Jan-Jun;6(1):188-97. doi: 10.4103/0976-9668.149120.
4
Discretization of the induced-charge boundary integral equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 1):011906. doi: 10.1103/PhysRevE.80.011906. Epub 2009 Jul 6.
5
A new approach to the selectivity of ion channels: nonlocal electrostatic consideration.
Dokl Biochem Biophys. 2007 Nov-Dec;417:302-5. doi: 10.1134/s1607672907060038.
6
Steric selectivity in Na channels arising from protein polarization and mobile side chains.
Biophys J. 2007 Sep 15;93(6):1960-80. doi: 10.1529/biophysj.107.105478. Epub 2007 May 25.
8
On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation.
J Gen Physiol. 2004 Dec;124(6):679-90. doi: 10.1085/jgp.200409111.

本文引用的文献

2
Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
Biophys J. 2002 Sep;83(3):1348-60. doi: 10.1016/S0006-3495(02)73905-2.
3
4
Simulation approaches to ion channel structure-function relationships.
Q Rev Biophys. 2001 Nov;34(4):473-561. doi: 10.1017/s0033583501003729.
8
Energetic optimization of ion conduction rate by the K+ selectivity filter.
Nature. 2001 Nov 1;414(6859):37-42. doi: 10.1038/35102000.
9
Hierarchical approach to predicting permeation in ion channels.
Biophys J. 2001 Nov;81(5):2473-83. doi: 10.1016/S0006-3495(01)75893-6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验