Fu Wenjiang J
Department of Epidemiology, Michigan State University, 4660 S. Hagadorn Road, Suite 600, East Lansing, Michigan 48823, USA.
Biometrics. 2003 Mar;59(1):126-32. doi: 10.1111/1541-0420.00015.
Penalty models--such as the ridge estimator, the Stein estimator, the bridge estimator, and the Lasso-have been proposed to deal with collinearity in regressions. The Lasso, for instance, has been applied to linear models, logistic regressions, Cox proportional hazard models, and neural networks. This article considers the bridge penalty model with penalty sigma(j)/beta(j)/gamma for estimating equations in general and applies this penalty model to the generalized estimating equations (GEE) in longitudinal studies. The lack of joint likelihood in the GEE is overcome by the penalized estimating equations, in which no joint likelihood is required. The asymptotic results for the penalty estimator are provided. It is demonstrated, with a simulation and an application, that the penalized GEE potentially improves the performance of the GEE estimator, and enjoys the same properties as linear penalty models.
惩罚模型,如岭估计器、斯坦因估计器、桥式估计器和套索估计器,已被提出用于处理回归中的共线性问题。例如,套索估计器已应用于线性模型、逻辑回归、Cox比例风险模型和神经网络。本文考虑了一般估计方程的具有惩罚项sigma(j)/beta(j)/gamma的桥式惩罚模型,并将此惩罚模型应用于纵向研究中的广义估计方程(GEE)。惩罚估计方程克服了GEE中联合似然性的缺失,其中不需要联合似然性。给出了惩罚估计器的渐近结果。通过模拟和应用表明,惩罚后的GEE可能会提高GEE估计器的性能,并且具有与线性惩罚模型相同的性质。