Suppr超能文献

基于支持向量机诊断乳腺癌。

Diagnosing breast cancer based on support vector machines.

作者信息

Liu H X, Zhang R S, Luan F, Yao X J, Liu M C, Hu Z D, Fan B T

机构信息

Department of Chemistry, Lanzhou University, Lanzhou 730000, China.

出版信息

J Chem Inf Comput Sci. 2003 May-Jun;43(3):900-7. doi: 10.1021/ci0256438.

Abstract

The Support Vector Machine (SVM) classification algorithm, recently developed from the machine learning community, was used to diagnose breast cancer. At the same time, the SVM was compared to several machine learning techniques currently used in this field. The classification task involves predicting the state of diseases, using data obtained from the UCI machine learning repository. SVM outperformed k-means cluster and two artificial neural networks on the whole. It can be concluded that nine samples could be mislabeled from the comparison of several machine learning techniques.

摘要

支持向量机(SVM)分类算法是机器学习领域最近开发出来的,用于诊断乳腺癌。同时,将支持向量机与该领域目前使用的几种机器学习技术进行了比较。分类任务涉及使用从UCI机器学习数据库获得的数据预测疾病状态。总体而言,支持向量机的表现优于k均值聚类和两种人工神经网络。从几种机器学习技术的比较中可以得出结论,有九个样本可能被误标记。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验