Suppr超能文献

具有纤维旋转的三维连续心肌中的涡旋动力学:细丝不稳定性与颤动。

Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation.

作者信息

Fenton Flavio, Karma Alain

机构信息

Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115.

出版信息

Chaos. 1998 Mar;8(1):20-47. doi: 10.1063/1.166311.

Abstract

Wave propagation in ventricular muscle is rendered highly anisotropic by the intramural rotation of the fiber. This rotational anisotropy is especially important because it can produce a twist of electrical vortices, which measures the rate of rotation (in degree/mm) of activation wavefronts in successive planes perpendicular to a line of phase singularity, or filament. This twist can then significantly alter the dynamics of the filament. This paper explores this dynamics via numerical simulation. After a review of the literature, we present modeling tools that include: (i) a simplified ionic model with three membrane currents that approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potential (Beeler-Reuter and others), and (ii) a semi-implicit algorithm for the fast solution of monodomain cable equations with rotational anisotropy. We then discuss selected results of a simulation study of vortex dynamics in a parallelepipedal slab of ventricular muscle of varying wall thickness (S) and fiber rotation rate (theta(z)). The main finding is that rotational anisotropy generates a sufficiently large twist to destabilize a single transmural filament and cause a transition to a wave turbulent state characterized by a high density of chaotically moving filaments. This instability is manifested by the propagation of localized disturbances along the filament and has no previously known analog in isotropic excitable media. These disturbances correspond to highly twisted and distorted regions of filament, or "twistons," that create vortex rings when colliding with the natural boundaries of the ventricle. Moreover, when sufficiently twisted, these rings expand and create additional filaments by further colliding with boundaries. This instability mechanism is distinct from the commonly invoked patchy failure or wave breakup that is not observed here during the initial instability. For modified Beeler-Reuter-like kinetics with stable reentry in two dimensions, decay into turbulence occurs in the left ventricle in about one second above a critical wall thickness in the range of 4-6 mm that matches experiment. However this decay is suppressed by uniformly decreasing excitability. Specific experiments to test these results, and a method to characterize the filament density during fibrillation are discussed. Results are contrasted with other mechanisms of fibrillation and future prospects are summarized. (c)1998 American Institute of Physics.

摘要

心肌纤维的壁内旋转使心室肌中的波传播呈现出高度各向异性。这种旋转各向异性尤为重要,因为它会产生电涡旋的扭转,该扭转衡量了在垂直于相位奇点线或细丝的连续平面中激活波前的旋转速率(以度/毫米为单位)。然后这种扭转会显著改变细丝的动力学。本文通过数值模拟探索这种动力学。在回顾文献之后,我们展示了建模工具,包括:(i)一个具有三种膜电流的简化离子模型,它能很好地近似心脏动作电位更复杂离子模型(如比勒 - 罗伊特等模型)的恢复特性和螺旋波行为,以及(ii)一种用于快速求解具有旋转各向异性的单域电缆方程的半隐式算法。然后我们讨论了在不同壁厚(S)和纤维旋转速率(θ(z))的平行六面体心室肌平板中涡旋动力学模拟研究的选定结果。主要发现是,旋转各向异性产生了足够大的扭转,使单个透壁细丝失稳,并导致向以高密度混沌运动细丝为特征的波湍流状态转变。这种不稳定性表现为局部扰动沿细丝传播,并且在各向同性可兴奋介质中没有先前已知的类似情况。这些扰动对应于细丝高度扭曲和变形的区域,即“扭子”,它们在与心室的自然边界碰撞时会产生涡环。此外,当扭曲足够大时,这些环会扩展并通过进一步与边界碰撞产生额外的细丝。这种不稳定性机制与通常提到的片状衰竭或波破裂不同,在初始不稳定性期间这里未观察到这种情况。对于具有二维稳定折返的类似比勒 - 罗伊特动力学,在左心室中,当壁厚超过4 - 6毫米的临界值时,大约一秒内会衰减为湍流,这与实验结果相符。然而,通过均匀降低兴奋性可以抑制这种衰减。讨论了测试这些结果的具体实验以及一种在颤动期间表征细丝密度的方法。将结果与其他颤动机制进行了对比,并总结了未来的前景。(c)1998美国物理研究所

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验