De Coster Tim, Nobacht Arman, Oostendorp Thom, de Vries Antoine A F, Coronel Ruben, Pijnappels Daniël A
Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands.
Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
Europace. 2024 Dec 26;27(1). doi: 10.1093/europace/euae300.
In 2024, we celebrate the 100th anniversary of Willem Einthoven receiving the Nobel Prize for his discovery of the mechanism of the electrocardiogram (ECG). Building on Einthoven's legacy, electrocardiography allows the monitoring of cardiac bioelectricity through solutions to the so-called forward and inverse problems. These solutions link local cardiac electrical signals with the morphology of the ECG, offering a reversible connection between the heart's electrical activity and its representation on the body surface. Inspired by Einthoven's work, researchers have explored the transition from monitoring to modulation of bioelectrical activity in the heart for the development of new anti-arrhythmic strategies, e.g. via optogenetics. In this review, we demonstrate the lasting influence that Einthoven has on our understanding of cardiac electrophysiology in general, and the diagnosis and treatment of cardiac arrhythmias in particular.
2024年,我们庆祝威廉·艾因托芬因发现心电图(ECG)机制而获得诺贝尔奖100周年。基于艾因托芬的遗产,心电图学通过解决所谓的正向和逆向问题实现了对心脏生物电的监测。这些解决方案将局部心脏电信号与心电图形态联系起来,在心脏电活动与其体表表现之间提供了一种可逆的联系。受艾因托芬工作的启发,研究人员探索了从心脏生物电活动监测到调节的转变,以开发新的抗心律失常策略,例如通过光遗传学。在这篇综述中,我们展示了艾因托芬对我们总体上理解心脏电生理学,尤其是对心律失常的诊断和治疗所产生的持久影响。