Suppr超能文献

DeepBindGCN:将分子向量表示与图卷积神经网络集成用于蛋白质-配体相互作用预测。

DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein-Ligand Interaction Prediction.

机构信息

Shenzhen Institute of Synthetic Biology, Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India.

出版信息

Molecules. 2023 Jun 10;28(12):4691. doi: 10.3390/molecules28124691.

Abstract

The core of large-scale drug virtual screening is to select the binders accurately and efficiently with high affinity from large libraries of small molecules in which non-binders are usually dominant. The binding affinity is significantly influenced by the protein pocket, ligand spatial information, and residue types/atom types. Here, we used the pocket residues or ligand atoms as the nodes and constructed edges with the neighboring information to comprehensively represent the protein pocket or ligand information. Moreover, the model with pre-trained molecular vectors performed better than the one-hot representation. The main advantage of DeepBindGCN is that it is independent of docking conformation, and concisely keeps the spatial information and physical-chemical features. Using TIPE3 and PD-L1 dimer as proof-of-concept examples, we proposed a screening pipeline integrating DeepBindGCN and other methods to identify strong-binding-affinity compounds. It is the first time a non-complex-dependent model has achieved a root mean square error (RMSE) value of 1.4190 and Pearson r value of 0.7584 in the PDBbind v.2016 core set, respectively, thereby showing a comparable prediction power with the state-of-the-art affinity prediction models that rely upon the 3D complex. DeepBindGCN provides a powerful tool to predict the protein-ligand interaction and can be used in many important large-scale virtual screening application scenarios.

摘要

大规模药物虚拟筛选的核心是从小分子文库中准确高效地筛选出具有高亲和力的配体,其中非配体通常占主导地位。结合亲和力受蛋白口袋、配体空间信息和残基类型/原子类型的显著影响。在这里,我们使用口袋残基或配体原子作为节点,并使用相邻信息构建边,以全面表示蛋白口袋或配体信息。此外,使用预先训练的分子向量的模型比 one-hot 表示的模型表现更好。DeepBindGCN 的主要优势在于它不依赖于对接构象,简洁地保留了空间信息和物理化学特征。我们使用 TIPE3 和 PD-L1 二聚体作为概念验证示例,提出了一个集成 DeepBindGCN 和其他方法的筛选管道,以识别具有强结合亲和力的化合物。这是第一个在 PDBbind v.2016 核心集中,非复杂依赖模型在 RMSE 值达到 1.4190 和 Pearson r 值达到 0.7584 的模型,从而显示出与依赖 3D 复合物的最新亲和力预测模型相当的预测能力。DeepBindGCN 为预测蛋白-配体相互作用提供了强大的工具,并可用于许多重要的大规模虚拟筛选应用场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc3/10301867/0ad876a391c8/molecules-28-04691-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验