Dotson Ellen M, Plikaytis Bonnie, Shinnick Thomas M, Durvasula Ravi V, Beard Charles B
Division of Parasitic Diseases, Centers for Disease Control and Prevention, NCID, DPD, MS F-22, 4770 Buford Highway, Atlanta, GA 30341, USA.
Infect Genet Evol. 2003 Jul;3(2):103-9. doi: 10.1016/s1567-1348(03)00002-9.
Elimination of vector populations through the use of insecticides is the principal means of controlling Chagas disease. Because of the limitations of insecticide use, we have been developing a new potential method of control, to be used in conjunction with insecticide programs, a method which utilizes genetically modified symbiotic bacteria. These transformed bacteria can express anti-parasitic agents in the gut of the bug where the trypanosomes also are found. Previous studies have shown that it is possible to transform Rhodococcus rhodnii with a shuttle plasmid that contains the gene for cecropin A, an insect anti-microbial peptide. The bacteria expressed this peptide and reduced or eliminated the number of trypanosomes in the bug Rhodnius prolixus [Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 3274]. In an effort to improve efficacy and transformation stability, we have begun using plasmids that contain integrative elements from the L1 mycobacteriophage to insert DNA into the genome of the bacterium. The integrative plasmid pBP5 contains the attachment site (attP) and integrase gene (int) of the L1 mycobacteriophage, an antibiotic resistance gene and the lacZ gene. After transforming R. rhodnii with pBP5, nine positive clones were obtained and six different insertions sites were identified. In each clone, the integrative plasmid is inserted only once, the lacZ gene is expressed intensely and, all clones but one, remained stable for 100 generations of culture in the absence of antibiotic selection. In addition, the construct remains stable throughout the life cycle of the bug. These data demonstrate that L1 mycobacteriophage integrative plasmids are significantly more stable than episomally located plasmids used in previous studies and will be greatly beneficial for use in the transformation of symbiotic bacteria of Chagas disease vectors.
通过使用杀虫剂消灭病媒种群是控制恰加斯病的主要手段。由于杀虫剂使用存在局限性,我们一直在开发一种新的潜在控制方法,以便与杀虫剂项目结合使用,该方法利用基因改造的共生细菌。这些经过改造的细菌可以在锥蝽肠道中表达抗寄生虫剂,而锥蝽肠道也是锥虫的寄生部位。先前的研究表明,用含有天蚕素A(一种昆虫抗菌肽)基因的穿梭质粒转化罗得西亚红球菌是可行的。这种细菌表达了这种肽,并减少或消除了长红锥蝽体内的锥虫数量[美国国家科学院院刊94(1997)3274]。为了提高疗效和转化稳定性,我们已开始使用含有来自L1分枝杆菌噬菌体整合元件的质粒,将DNA插入细菌基因组。整合质粒pBP5包含L1分枝杆菌噬菌体的附着位点(attP)和整合酶基因(int)、一个抗生素抗性基因和lacZ基因。用pBP5转化罗得西亚红球菌后,获得了9个阳性克隆,并鉴定出6个不同的插入位点。在每个克隆中,整合质粒只插入一次,lacZ基因强烈表达,并且除了一个克隆外,所有克隆在无抗生素选择的情况下传代培养100代仍保持稳定。此外,该构建体在锥蝽的整个生命周期中都保持稳定。这些数据表明,L1分枝杆菌噬菌体整合质粒比先前研究中使用的游离型质粒稳定性显著更高,将非常有利于用于恰加斯病病媒共生细菌的转化。