Suppr超能文献

Metabolism of 12-hydroperoxyeicosatetraenoic acid to vasodilatory trioxilin C3 by rabbit aorta.

作者信息

Pfister Sandra L, Spitzbarth Nancy, Nithipatikom Kasem, Falck John R, Campbell William B

机构信息

Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.

出版信息

Biochim Biophys Acta. 2003 Jun 20;1622(1):6-13. doi: 10.1016/s0304-4165(03)00097-7.

Abstract

Arachidonic acid is metabolized by both the cyclooxygenase and lipoxygenase pathways by rabbit aorta. We investigated the metabolism of 12-hydroperoxyeicosatetraenoic acid by aortic homogenates and microsomes. Rabbit aortic homogenates were incubated in the presence of (14)C-arachidonic acid plus 12-lipoxygenase and analyzed by reversed-phase high-pressure liquid chromatography (HPLC). Under these experimental conditions, there was a (14)C-metabolite that migrated at 17.6 min. This (14)C-metabolite was not observed when aortic homogenates were incubated in the absence of 12-lipoxygenase. Similar results were obtained with aortic microsomes. Further analysis using a different HPLC solvent system resolved the (14)C-metabolite into a number of products. Gas chromatography/mass spectrometric (GC-MS) analysis of the major product (labeled peak 3) after conversion to the methyl ester-trimethylsilyl derivative showed two major compounds (compounds A and B) eluting at 13.99 and 14.14 min. The two compounds differed in the intensities of the 213 and 243 m/z ions with 243 being greater than 213 in compound A and the opposite in compound B (relative abundance 213 vs. 243; 100% vs. 43% for compound A and 5% vs. 100% for compound B). Based on the mass spectra, peak 3 contained two metabolites identified as the methyl ester-trimethylsilyl ether derivatives of 8,11,12-trihydroxyeicosatrienoic acid (trioxilin A(3)) and 8,9,12-trihydroxyeicosatrienoic acid (trioxilin C(3)). Biological activity of the mixture of two trioxilins isolated from aortic homogenates was tested in phenylephrine-precontracted aortas and found to produce concentration-dependent relaxations (maximal relaxation: 20.1+/-7.6%). Further testing with authentic trioxilin A(3) and C(3) revealed that trioxilin C(3) was the active metabolite (maximal relaxation: 16.6+/-1.3%). In conclusion, trioxilin C(3) acid was isolated and identified as a novel biologically active arachidonic acid metabolite formed by rabbit aorta when 12-lipoxygenase is supplied exogenously.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验