Suppr超能文献

整合素在纤维素超薄膜上的固体支撑膜中的功能整合:对粘附的影响。

Functional incorporation of integrins into solid supported membranes on ultrathin films of cellulose: impact on adhesion.

作者信息

Goennenwein Stefanie, Tanaka Motomu, Hu Bin, Moroder Luis, Sackmann Erich

机构信息

Technische Universität München, Garching, Germany.

出版信息

Biophys J. 2003 Jul;85(1):646-55. doi: 10.1016/S0006-3495(03)74508-1.

Abstract

Biomimetic models of cell surfaces were designed to study the physical basis of cell adhesion. Vesicles bearing reconstituted blood platelet integrin receptors alpha(IIb)beta(3) were spread on ultrathin films of cellulose, forming continuous supported membranes. One fraction of the integrin receptors, which were facing their extracellular domain toward the aqueous phase, were mobile, exhibiting a diffusion constant of 0.6 micro m(2) s(-1). The functionality of receptors on bare glass and on cellulose cushions was compared by measuring adhesion strength to giant vesicles. The vesicles contained lipid-coupled cyclic hexapeptides that are specifically recognized by integrin alpha(IIb)beta(3). To mimic the steric repulsion forces of the cell glycocalix, lipids with polyethylene glycol headgroups were incorporated into the vesicles. The free adhesion energy per unit area deltag(ad) was determined by micro-interferometric analysis of the vesicle's contour near the membrane surface in terms of the equilibrium of the elastic forces. By accounting for the reduction of the adhesion strength by the repellers and from measuring the density of receptors one could estimate the specific receptor ligand binding energy. We estimate the receptor-ligand binding energy to be 10 k(B)T under bioanalogue conditions.

摘要

设计细胞表面的仿生模型以研究细胞黏附的物理基础。携带重组血小板整合素受体α(IIb)β(3)的囊泡铺展在纤维素超薄膜上,形成连续的支撑膜。一部分整合素受体将其细胞外结构域朝向水相,具有流动性,扩散常数为0.6μm² s⁻¹。通过测量与巨型囊泡的黏附强度,比较了裸露玻璃和纤维素垫层上受体的功能。这些囊泡含有脂质偶联的环六肽,可被整合素α(IIb)β(3)特异性识别。为模拟细胞糖萼的空间排斥力,将带有聚乙二醇头部基团的脂质掺入囊泡中。通过对膜表面附近囊泡轮廓进行微干涉分析,根据弹力平衡确定单位面积的自由黏附能Δg(ad)。通过考虑排斥剂对黏附强度的降低以及测量受体密度,可以估算特异性受体-配体结合能。我们估计在生物类似条件下受体-配体结合能为10k(B)T。

相似文献

2
Integrin reconstituted in GUVs: a biomimetic system to study initial steps of cell spreading.
Biochim Biophys Acta. 2009 Oct;1788(10):2291-300. doi: 10.1016/j.bbamem.2009.07.025. Epub 2009 Aug 7.
3
Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system.
Biophys J. 2001 Nov;81(5):2743-51. doi: 10.1016/S0006-3495(01)75917-6.
4
Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance.
Eur Phys J E Soft Matter. 2004 Jul;14(3):269-76. doi: 10.1140/epje/i2003-10151-2.
6
Adhesion-induced receptor segregation and adhesion plaque formation: A model membrane study.
Biophys J. 1999 Oct;77(4):2311-28. doi: 10.1016/S0006-3495(99)77070-0.
7
PEG as a tool to gain insight into membrane fusion.
Eur Biophys J. 2007 Apr;36(4-5):315-26. doi: 10.1007/s00249-006-0097-z. Epub 2006 Oct 13.
9
Imaging fast SNARE mediated-membrane fusion in planar-supported bilayers.
Biophys J. 2005 Oct;89(4):2185-6. doi: 10.1529/biophysj.105.068460. Epub 2005 Aug 12.
10
Key roles of enzyme positions and membrane surface potentials in the properties of biomimetic membranes.
Arch Biochem Biophys. 2004 Apr 15;424(2):235-45. doi: 10.1016/j.abb.2004.02.016.

引用本文的文献

1
Supported Biomembrane Systems Incorporating Multiarm Polymers and Bioorthogonal Tethering.
Langmuir. 2024 Jun 4;40(22):11401-11410. doi: 10.1021/acs.langmuir.4c00176. Epub 2024 May 20.
2
Role of Interaction Range and Buoyancy on the Adhesion of Vesicles.
Langmuir. 2024 Feb 6;40(7):3376-90. doi: 10.1021/acs.langmuir.3c02715.
3
Low Surface Potential with Glycoconjugates Determines Insect Cell Adhesion at Room Temperature.
J Phys Chem Lett. 2022 Oct 13;13(40):9494-9500. doi: 10.1021/acs.jpclett.2c01673. Epub 2022 Oct 6.
4
Quartz crystal microbalance and atomic force microscopy to characterize mimetic systems based on supported lipids bilayer.
Front Mol Biosci. 2022 Aug 3;9:935376. doi: 10.3389/fmolb.2022.935376. eCollection 2022.
5
Critical role of lipid membranes in polarization and migration of cells: a biophysical view.
Biophys Rev. 2021 Jan 11;13(1):123-138. doi: 10.1007/s12551-021-00781-1. eCollection 2021 Feb.
6
Recent Advances and Prospects in the Research of Nascent Adhesions.
Front Physiol. 2020 Dec 4;11:574371. doi: 10.3389/fphys.2020.574371. eCollection 2020.
7
Development of Nascent Focal Adhesions in Spreading Cells.
Biophys J. 2020 Nov 17;119(10):2063-2073. doi: 10.1016/j.bpj.2020.09.037. Epub 2020 Oct 15.
8
Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications.
Polymers (Basel). 2020 Apr 26;12(5):1003. doi: 10.3390/polym12051003.
9
Ultrathin Films of Cellulose: A Materials Perspective.
Front Chem. 2019 Jul 17;7:488. doi: 10.3389/fchem.2019.00488. eCollection 2019.
10
Constructing Supported Cell Membranes with Controllable Orientation.
Sci Rep. 2019 Feb 26;9(1):2747. doi: 10.1038/s41598-019-39075-8.

本文引用的文献

1
Assembly of polymer/lipid composite films on solids based on hairy rod LB-films.
Eur Biophys J. 1997;25(4):249-59. doi: 10.1007/s002490050037.
2
Cell adhesion as wetting transition?
Chemphyschem. 2002 Mar 12;3(3):262-9. doi: 10.1002/1439-7641(20020315)3:3<262::AID-CPHC262>3.0.CO;2-U.
3
Adhesive switching of membranes: experiment and theory.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Apr;61(4 Pt B):4253-67. doi: 10.1103/physreve.61.4253.
5
Distribution and stability of membrane proteins in lipid membranes on solid supports.
Biosens Bioelectron. 2000 Mar;15(1-2):31-41. doi: 10.1016/s0956-5663(00)00050-6.
7
Adhesion of vesicles.
Phys Rev A. 1990 Oct 15;42(8):4768-4771. doi: 10.1103/physreva.42.4768.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验