Suppr超能文献

癌症相关疲劳的多维独立预测因素。

Multidimensional independent predictors of cancer-related fatigue.

作者信息

Hwang Shirley S, Chang Victor T, Rue Montse, Kasimis Basil

机构信息

Section of Hematology/Oncology, and Patient Care Services, VA New Jersey Health Care System, and UMDNJ/School of Nursing-Newark, East Orange, New Jersey 07018, USA.

出版信息

J Pain Symptom Manage. 2003 Jul;26(1):604-14. doi: 10.1016/s0885-3924(03)00218-5.

Abstract

The purpose of this study was to identify independent predictors of clinically significant fatigue based upon a multidimensional model. A total of 180 cancer patients completed the Brief Fatigue Inventory (BFI), Functional Assessment of Cancer Therapy-Fatigue (FACT-F), Memorial Symptom Assessment Scale Short Form (MSAS-SF), and the Zung Self-Rating Depression Scale (SDS). Additional data included Karnofsky Performance Status (KPS) score, laboratory tests, and demographic information. The BFI usual fatigue severity > or =3/10 was defined as clinically significant fatigue. Possible independent variables were identified from a biopsychosocial model of fatigue. Fisher's exact test was used to univariately assess the association of each variable with clinically significant fatigue. Multiple logistic regression analyses were used to identify independent predictors of fatigue within each dimension, and then across dimensions. Fatigue was present in 113 (62%) patients, and 80 (44.4%) patients had usual fatigue > or =3/10. The unidimensional independent predictors were use of analgesics (situation dimension); hemoglobin and serum sodium (biomedical dimension); feeling drowsy, dyspnea, pain and lack of appetite (physical symptom dimension); and feeling sad and feeling irritable (psychological symptom dimension). In a multidimensional model, dyspnea, pain, lack of appetite, feeling drowsy, feeling sad, and feeling irritable predicted fatigue independently with good calibration (Hosmer Lemeshow Chi Square=5.73, P=0.68) and discrimination (area under the receiver operating characteristic curve=0.88). Physical and psychological symptoms predict fatigue independently in the multidimensional model, and superseded laboratory data. These findings support a symptom-oriented approach to assessment of cancer-related fatigue.

摘要

本研究的目的是基于多维模型确定具有临床意义的疲劳的独立预测因素。共有180名癌症患者完成了简易疲劳量表(BFI)、癌症治疗功能评估-疲劳量表(FACT-F)、纪念症状评估量表简表(MSAS-SF)和zung自评抑郁量表(SDS)。其他数据包括卡氏功能状态(KPS)评分、实验室检查和人口统计学信息。BFI中通常疲劳严重程度≥3/10被定义为具有临床意义的疲劳。从疲劳的生物心理社会模型中确定可能的自变量。采用Fisher精确检验单因素评估每个变量与具有临床意义的疲劳之间的关联。多因素逻辑回归分析用于确定每个维度内以及跨维度的疲劳独立预测因素。113名(62%)患者存在疲劳,80名(44.4%)患者通常疲劳≥3/10。单维度独立预测因素为使用镇痛药(情境维度);血红蛋白和血清钠(生物医学维度);感到困倦、呼吸困难、疼痛和食欲不振(躯体症状维度);以及感到悲伤和易怒(心理症状维度)。在多维模型中,呼吸困难、疼痛、食欲不振、感到困倦、感到悲伤和易怒可独立预测疲劳,校准良好(Hosmer Lemeshow卡方=5.73,P=0.68)且具有鉴别力(受试者工作特征曲线下面积=0.88)。在多维模型中,躯体和心理症状可独立预测疲劳,并取代了实验室数据。这些发现支持采用以症状为导向的方法评估癌症相关疲劳。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验