Yang Yuxin, Li Yueqi, Tang Longhua, Li Jinghong
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Nanhu Brain-Computer Interface Institute, Hangzhou, Zhejiang 311100, China.
Precis Chem. 2024 Sep 16;2(10):518-538. doi: 10.1021/prechem.4c00048. eCollection 2024 Oct 28.
Single-molecule bioelectronic sensing, a groundbreaking domain in biological research, has revolutionized our understanding of molecules by revealing deep insights into fundamental biological processes. The advent of emergent technologies, such as nanogapped electrodes and nanopores, has greatly enhanced this field, providing exceptional sensitivity, resolution, and integration capabilities. However, challenges persist, such as complex data sets with high noise levels and stochastic molecular dynamics. Artificial intelligence (AI) has stepped in to address these issues with its powerful data processing capabilities. AI algorithms effectively extract meaningful features, detect subtle changes, improve signal-to-noise ratios, and uncover hidden patterns in massive data. This review explores the synergy between AI and single-molecule bioelectronic sensing, focusing on how AI enhances signal processing and data analysis to boost accuracy and reliability. We also discuss current limitations and future directions for integrating AI, highlighting its potential to advance biological research and technological innovation.
单分子生物电子传感是生物研究中的一个开创性领域,它通过揭示对基本生物过程的深刻见解,彻底改变了我们对分子的理解。诸如纳米间隙电极和纳米孔等新兴技术的出现极大地推动了这一领域的发展,提供了卓越的灵敏度、分辨率和集成能力。然而,挑战依然存在,比如存在高噪声水平的复杂数据集以及随机分子动力学。人工智能(AI)凭借其强大的数据处理能力介入以解决这些问题。AI算法能有效提取有意义的特征、检测细微变化、提高信噪比并在海量数据中发现隐藏模式。本综述探讨了AI与单分子生物电子传感之间的协同作用,重点关注AI如何增强信号处理和数据分析以提高准确性和可靠性。我们还讨论了整合AI的当前局限性和未来方向,强调其推动生物研究和技术创新的潜力。