Suppr超能文献

在线性模型中针对基线协变量调整功效。

Adjusting power for a baseline covariate in linear models.

作者信息

Glueck Deborah H, Muller Keith E

机构信息

Department of Preventive Medicine and Biometrics, University of Colorado Health Sciences Center, Denver, CO 80262, U.S.A.

出版信息

Stat Med. 2003 Aug 30;22(16):2535-51. doi: 10.1002/sim.1341.

Abstract

The analysis of covariance provides a common approach to adjusting for a baseline covariate in medical research. With Gaussian errors, adding random covariates does not change either the theory or the computations of general linear model data analysis. However, adding random covariates does change the theory and computation of power analysis. Many data analysts fail to fully account for this complication in planning a study. We present our results in five parts. (i) A review of published results helps document the importance of the problem and the limitations of available methods. (ii) A taxonomy for general linear multivariate models and hypotheses allows identifying a particular problem. (iii) We describe how random covariates introduce the need to consider quantiles and conditional values of power. (iv) We provide new exact and approximate methods for power analysis of a range of multivariate models with a Gaussian baseline covariate, for both small and large samples. The new results apply to the Hotelling-Lawley test and the four tests in the "univariate" approach to repeated measures (unadjusted, Huynh-Feldt, Geisser-Greenhouse, Box). The techniques allow rapid calculation and an interactive, graphical approach to sample size choice. (v) Calculating power for a clinical trial of a treatment for increasing bone density illustrates the new methods. We particularly recommend using quantile power with a new Satterthwaite-style approximation.

摘要

协方差分析为医学研究中对基线协变量进行调整提供了一种常用方法。在高斯误差情况下,添加随机协变量既不会改变一般线性模型数据分析的理论,也不会改变其计算方法。然而,添加随机协变量确实会改变功效分析的理论和计算方法。许多数据分析人员在规划研究时未能充分考虑到这一复杂性。我们分五个部分展示我们的结果。(i)对已发表结果的回顾有助于证明该问题的重要性以及现有方法的局限性。(ii)一般线性多变量模型和假设的分类法有助于识别特定问题。(iii)我们描述随机协变量如何引入考虑功效分位数和条件值的必要性。(iv)我们为具有高斯基线协变量的一系列多变量模型的功效分析提供了新的精确和近似方法,适用于小样本和大样本。新结果适用于霍特林 - 劳利检验以及重复测量“单变量”方法中的四个检验(未调整、Huynh - Feldt、Geisser - Greenhouse、Box)。这些技术允许快速计算,并采用交互式图形方法来选择样本量。(v)计算一种增加骨密度治疗方法的临床试验的功效说明了这些新方法。我们特别推荐使用具有新的萨特思韦特式近似法的分位数功效。

相似文献

6
Tests for gaussian repeated measures with missing data in small samples.小样本中存在缺失数据的高斯重复测量检验。
Stat Med. 2000 Apr 30;19(8):1101-14. doi: 10.1002/(sici)1097-0258(20000430)19:8<1101::aid-sim415>3.0.co;2-h.

引用本文的文献

8
Sample Size for Joint Testing of Indirect Effects.间接效应联合检验的样本量
Prev Sci. 2015 Nov;16(8):1128-35. doi: 10.1007/s11121-014-0528-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验