Blankertz Benjamin, Dornhege Guido, Schäfer Christin, Krepki Roman, Kohlmorgen Jens, Müller Klaus-Robert, Kunzmann Volker, Losch Florian, Curio Gabriel
Fraunhofer-FIRST, Berlin, Germany.
IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):127-31. doi: 10.1109/TNSRE.2003.814456.
Brain-computer interfaces (BCIs) involve two coupled adapting systems--the human subject and the computer. In developing our BCI, our goal was to minimize the need for subject training and to impose the major learning load on the computer. To this end, we use behavioral paradigms that exploit single-trial EEG potentials preceding voluntary finger movements. Here, we report recent results on the basic physiology of such premovement event-related potentials (ERP). 1) We predict the laterality of imminent left- versus right-hand finger movements in a natural keyboard typing condition and demonstrate that a single-trial classification based on the lateralized Bereitschaftspotential (BP) achieves good accuracies even at a pace as fast as 2 taps/s. Results for four out of eight subjects reached a peak information transfer rate of more than 15 b/min; the four other subjects reached 6-10 b/min. 2) We detect cerebral error potentials from single false-response trials in a forced-choice task, reflecting the subject's recognition of an erroneous response. Based on a specifically tailored classification procedure that limits the rate of false positives at, e.g., 2%, the algorithm manages to detect 85% of error trials in seven out of eight subjects. Thus, concatenating a primary single-trial BP-paradigm involving finger classification feedback with such secondary error detection could serve as an efficient online confirmation/correction tool for improvement of bit rates in a future BCI setting. As the present variant of the Berlin BCI is designed to achieve fast classifications in normally behaving subjects, it opens a new perspective for assistance of action control in time-critical behavioral contexts; the potential transfer to paralyzed patients will require further study.
脑机接口(BCI)涉及两个相互耦合的自适应系统——人类受试者和计算机。在开发我们的BCI时,我们的目标是尽量减少受试者的训练需求,并将主要的学习负担加在计算机上。为此,我们使用了行为范式,该范式利用自愿手指运动之前的单次试验脑电图电位。在此,我们报告了关于这种运动前事件相关电位(ERP)基本生理学的最新结果。1)我们预测在自然键盘打字条件下即将进行的左手与右手手指运动的偏侧性,并证明基于偏侧化准备电位(BP)的单次试验分类即使在高达每秒2次敲击的速度下也能达到良好的准确率。八名受试者中有四名的结果达到了超过15比特/分钟的峰值信息传输率;其他四名受试者达到了6 - 10比特/分钟。2)我们在强制选择任务中从单个错误响应试验中检测大脑错误电位,反映受试者对错误响应的识别。基于一种专门定制的分类程序,该程序将误报率限制在例如2%,该算法在八名受试者中的七名中成功检测到了85%的错误试验。因此,将涉及手指分类反馈的主要单次试验BP范式与这种次要错误检测相结合,可以作为一种有效的在线确认/校正工具,用于在未来的BCI设置中提高比特率。由于柏林BCI的当前变体旨在在正常行为的受试者中实现快速分类,它为在时间紧迫的行为情境中协助动作控制开辟了一个新的视角;向瘫痪患者的潜在转移将需要进一步研究。