Suppr超能文献

通过特征组合和多类范式提高无创脑电图单次试验分类中的比特率。

Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms.

作者信息

Dornhege Guido, Blankertz Benjamin, Curio Gabriel, Müller Klaus-Robert

机构信息

Fraunhofer FIRST (IDA), 12489 Berlin, Germany.

出版信息

IEEE Trans Biomed Eng. 2004 Jun;51(6):993-1002. doi: 10.1109/TBME.2004.827088.

Abstract

Noninvasive electroencephalogram (EEG) recordings provide for easy and safe access to human neocortical processes which can be exploited for a brain-computer interface (BCI). At present, however, the use of BCIs is severely limited by low bit-transfer rates. We systematically analyze and develop two recent concepts, both capable of enhancing the information gain from multichannel scalp EEG recordings: 1) the combination of classifiers, each specifically tailored for different physiological phenomena, e.g., slow cortical potential shifts, such as the pre-movement Bereitschaftspotential or differences in spatio-spectral distributions of brain activity (i.e., focal event-related desynchronizations) and 2) behavioral paradigms inducing the subjects to generate one out of several brain states (multiclass approach) which all bare a distinctive spatio-temporal signature well discriminable in the standard scalp EEG. We derive information-theoretic predictions and demonstrate their relevance in experimental data. We will show that a suitably arranged interaction between these concepts can significantly boost BCI performances.

摘要

无创脑电图(EEG)记录为轻松、安全地获取人类新皮层过程提供了途径,这些过程可用于脑机接口(BCI)。然而,目前脑机接口的使用受到低比特传输率的严重限制。我们系统地分析并开发了两种最新概念,它们都能够增强多通道头皮脑电图记录的信息增益:1)分类器的组合,每个分类器都针对不同的生理现象进行了专门定制,例如缓慢的皮层电位变化,如运动前的 Bereitschaftspotential 或大脑活动的时空谱分布差异(即局灶性事件相关去同步化);2)行为范式,诱导受试者产生几种脑状态之一(多类方法),所有这些脑状态都具有在标准头皮脑电图中易于区分的独特时空特征。我们得出了信息论预测,并证明了它们在实验数据中的相关性。我们将表明,这些概念之间适当安排的相互作用可以显著提高脑机接口的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验