Zhu Xiao-Ping, Du An-Tao, Jahng Geon-Ho, Soher Brian J, Maudsley Andrew A, Weiner Michael W, Schuff Norbert
Magnetic Resonance Unit, VA Medical Center, San Francisco, California 94121, USA.
Magn Reson Med. 2003 Sep;50(3):474-82. doi: 10.1002/mrm.10572.
A new method, based on a deformable shape-intensity model (DSM), was developed to improve the signal-to-noise ratio (SNR) of multidimensional magnetic resonance spectroscopic imaging (MRSI) data sets without affecting spectral lineshapes and linewidths. Improvements with DSM, compared to digital filters using conventional signal apodization, were demonstrated on both simulated and experimental in vivo (1)H MRS images from 22 cognitively normal (CN) elderly subjects and 25 patients with Alzheimer's disease (AD). Simulated MRSI data showed that DSM achieved superior noise suppression compared to a matched apodization filter. Experimental MRSI data showed that SNR could be increased 2.1-fold with DSM without distorting spectral resolution, thus maintaining all spectral features of the raw, unfiltered data. In conclusion, DSM should be used to achieve high SNR in reconstructing MRSI data.
一种基于可变形形状强度模型(DSM)的新方法被开发出来,用于提高多维磁共振波谱成像(MRSI)数据集的信噪比(SNR),同时不影响谱线形状和线宽。与使用传统信号切趾的数字滤波器相比,DSM的改进在来自22名认知正常(CN)老年人和25名阿尔茨海默病(AD)患者的模拟和实验体内(1)H MRS图像上均得到了证明。模拟MRSI数据表明,与匹配的切趾滤波器相比,DSM实现了更好的噪声抑制。实验MRSI数据表明,使用DSM可以将SNR提高2.1倍,而不会扭曲光谱分辨率,从而保持原始未滤波数据的所有光谱特征。总之,在重建MRSI数据时应使用DSM来实现高SNR。