Suppr超能文献

Kinetic role of nonnative species in the folding of bovine pancreatic trypsin inhibitor.

作者信息

Weissman J S, Kim P S

机构信息

Howard Hughes Medical Institute, Department of Physics, Nine Cambridge Center, MA 02142.

出版信息

Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9900-4. doi: 10.1073/pnas.89.20.9900.

Abstract

We have shown previously that during the oxidative folding of bovine pancreatic trypsin inhibitor only intermediates with native disulfide bonds are well populated. Nevertheless, these studies also confirmed the earlier conclusion [Creighton, T. E. (1977) J. Mol. Biol. 113, 275-293] that the rate-limiting transition in the kinetically preferred route for folding involves intramolecular disulfide bond rearrangements. Consequently, intermediates with nonnative disulfide bonds must form transiently during folding. Two specific nonnative species, denoted [30-51; 5-14] and [30-51; 5-38], in which numbers indicate residues participating in a disulfide bond, can be detected at low levels in kinetic folding experiments with bovine pancreatic trypsin inhibitor. By working with purified reversibly trapped intermediates, the role of these two nonnative species has been examined directly. These species are found to be in relatively rapid exchange with each other and with an initially formed native two-disulfide intermediate [30-51; 14-38]. Thus, the low abundance of the two nonnative species detected in kinetic folding experiments reflects primarily their low thermodynamic stability as compared to this native intermediate. To a small extent, these nonnative species form the productive native intermediate [30-51; 5-55], which is the immediate precursor to the native protein. However, an equal amount of [5-55; 14-38], a nonproductive dead-end intermediate, is also produced. Thus, the nonnative species detected during the folding of bovine pancreatic trypsin inhibitor are not committed to forming the productive native intermediate, nor do they serve to direct folding specifically toward a productive route.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb93/50241/299c80c5a11d/pnas01094-0545-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验