Suppr超能文献

人类DNA聚合酶η和嗜热栖热菌Dpo4对无嘌呤/无嘧啶位点的绕过效率和特异性

The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4.

作者信息

Kokoska Robert J, McCulloch Scott D, Kunkel Thomas A

机构信息

Laboratories of Molecular Genetics and Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.

出版信息

J Biol Chem. 2003 Dec 12;278(50):50537-45. doi: 10.1074/jbc.M308515200. Epub 2003 Sep 30.

Abstract

One of the most common DNA lesions arising in cells is an apurinic/apyrimidinic (AP) site resulting from base loss. Although a template strand AP site impedes DNA synthesis, translesion synthesis (TLS) DNA polymerases can bypass an AP site. Because this bypass is expected to be highly mutagenic because of loss of base coding potential, here we quantify the efficiency and the specificity of AP site bypass by two Y family TLS enzymes, Sulfolobus solfataricus DNA polymerase 4 (Dpo4) and human DNA polymerase eta (Pol eta). During a single cycle of processive DNA synthesis, Dpo4 and Pol eta bypass synthetic AP sites with 13-30 and 10-13%, respectively, of the bypass efficiency for undamaged bases in the same sequence contexts. These efficiencies are higher than for the A family, exonuclease-deficient Klenow fragment of Escherichia coli DNA polymerase I. We then determined AP site bypass specificity for complete bypass, requiring insertion or misalignment at the AP site followed by multiple incorporations using the aberrant primer templates. Although Dpo4, Pol eta, and Klenow polymerase have different fidelity when copying undamaged DNA, bypass of AP sites lacking A or G by all three polymerases is nearly 100% mutagenic. The majority (70-80%) of bypass events made by all three polymerases are insertion of dAMP opposite the AP site. Single base deletion errors comprise 10-25% of bypass events, with other base insertions observed at lower rates. Given that mammalian cells contain five polymerases implicated in TLS, and given that a large number of AP sites are generated per mammalian cell per day, even moderately efficient AP site bypass could be a source of substitution and frameshift mutagenesis in vivo.

摘要

细胞中出现的最常见的DNA损伤之一是由于碱基丢失产生的无嘌呤/无嘧啶(AP)位点。尽管模板链AP位点会阻碍DNA合成,但跨损伤合成(TLS)DNA聚合酶可以绕过AP位点。由于这种绕过预计会因碱基编码潜能的丧失而具有高度致突变性,因此我们在此定量了两种Y家族TLS酶——嗜热栖热菌DNA聚合酶4(Dpo4)和人类DNA聚合酶η(Pol η)绕过AP位点的效率和特异性。在连续的DNA合成单循环过程中,在相同序列背景下,Dpo4和Pol η分别以13% - 30%和10% - 13%的绕过效率绕过合成AP位点,该效率相对于未损伤碱基的绕过效率而言。这些效率高于A家族的、缺乏外切核酸酶活性的大肠杆菌DNA聚合酶I的Klenow片段。然后,我们确定了完全绕过AP位点的特异性,这需要在AP位点处进行插入或错配,随后使用异常引物模板进行多次掺入。尽管Dpo4、Pol η和Klenow聚合酶在复制未损伤DNA时具有不同的保真度,但这三种聚合酶对缺乏A或G的AP位点的绕过几乎100%具有致突变性。这三种聚合酶产生的大多数(70% - 80%)绕过事件是在AP位点对面插入dAMP。单碱基缺失错误占绕过事件的10% - 25%,其他碱基插入的发生率较低。鉴于哺乳动物细胞含有五种与TLS相关的聚合酶,并且鉴于每个哺乳动物细胞每天会产生大量的AP位点,即使是适度有效的AP位点绕过也可能是体内替换和移码诱变的一个来源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验