Suppr超能文献

体内受体-配体相互作用的实时无创成像。

Real time non-invasive imaging of receptor-ligand interactions in vivo.

作者信息

Winnard Paul, Raman Venu

机构信息

Department of Radiology, MRI Division, Johns Hopkins University, Traylor 340, 720 Rutland Avenue, Baltimore, Maryland 21205-2196, USA.

出版信息

J Cell Biochem. 2003 Oct 15;90(3):454-63. doi: 10.1002/jcb.10616.

Abstract

Non-invasive longitudinal detection and evaluation of gene expression in living animals can provide investigators with an understanding of the ontogeny of a gene's biological function(s). Currently, mouse model systems are used to optimize magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and optical imaging modalities to detect gene expression and protein function. These molecular imaging strategies are being developed to assess tumor growth and the tumor microenvironment. In addition, pre-labeling of progenitor cells can provide invaluable information about the developmental lineage of stem cells both in organogenesis and tumorigenesis. The feasibility of this approach has been extensively tested by targeting of endogenous tumor cell receptors with labeled ligand (or ligand analog) reporters and targeting enzymes with labeled substrate (or substrate analog). We will primarily discuss MRI, PET, and SPECT imaging of cell surface receptors and the feasibility of non-invasive imaging of gene expression using the tumor microenvironment (e.g., hypoxia) as a conditional regulator of gene expression.

摘要

对活体动物基因表达进行无创纵向检测和评估,可为研究人员提供对基因生物学功能个体发生的理解。目前,小鼠模型系统用于优化磁共振成像(MRI)、正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)和光学成像模式,以检测基因表达和蛋白质功能。这些分子成像策略正在被开发用于评估肿瘤生长和肿瘤微环境。此外,祖细胞的预标记可以提供有关干细胞在器官发生和肿瘤发生中发育谱系的宝贵信息。通过用标记配体(或配体类似物)报告分子靶向内源性肿瘤细胞受体以及用标记底物(或底物类似物)靶向酶,已广泛测试了该方法的可行性。我们将主要讨论细胞表面受体的MRI、PET和SPECT成像,以及使用肿瘤微环境(如缺氧)作为基因表达的条件调节因子进行基因表达无创成像的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验