Liu Xiaoqi, Parks Kelsey, Saknite Inga, Reasat Tahsin, Cronin Austin D, Wheless Lee E, Dawant Benoit M, Tkaczyk Eric R
Department of Veterans Affairs, Tennessee Valley Healthcare System, Dermatology Service, 1310 24th Avenue South, Nashville, TN 37212-2637, USA.
Department of Electrical Engineering and Computer Science, Vanderbilt University, 361 Jacobs Hall, Nashville, TN 37235-1662, USA.
Clin Hematol Int. 2021 Jul 15;3(3):108-115. doi: 10.2991/chi.k.210704.001. eCollection 2021 Sep.
Cutaneous erythema is used in diagnosis and response assessment of cutaneous chronic graft-versus-host disease (cGVHD). The development of objective erythema evaluation methods remains a challenge. We used a pre-trained neural network to segment cGVHD erythema by detecting changes relative to a patient's registered baseline photo. We fixed this change detection algorithm on human annotations from a single photo pair, by using either a traditional approach or by marking definitely affected ("Do Not Miss", DNM) and definitely unaffected skin ("Do Not Include", DNI). The fixed algorithm was applied to each of the remaining 47 test photo pairs from six follow-up sessions of one patient. We used both the Dice index and the opinion of two board-certified dermatologists to evaluate the algorithm performance. The change detection algorithm correctly assigned 80% of the pixels, regardless of whether it was fixed on traditional (median accuracy: 0.77, interquartile range 0.62-0.87) or DNM/DNI segmentations (0.81, 0.65-0.89). When the algorithm was fixed on markings by different annotators, the DNM/DNI achieved more consistent outputs (median Dice indices: 0.94-0.96) than the traditional method (0.73-0.81). Compared to viewing only rash photos, the addition of baseline photos improved the reliability of dermatologists' scoring. The inter-rater intraclass correlation coefficient increased from 0.19 (95% confidence interval lower bound: 0.06) to 0.51 (lower bound: 0.35). In conclusion, a change detection algorithm accurately assigned erythema in longitudinal photos of cGVHD. The reliability was significantly improved by exclusively using confident human segmentations to fix the algorithm. Baseline photos improved the agreement among two dermatologists in assessing algorithm performance.
皮肤红斑用于皮肤慢性移植物抗宿主病(cGVHD)的诊断和反应评估。客观红斑评估方法的发展仍然是一项挑战。我们使用预训练神经网络,通过检测相对于患者注册的基线照片的变化来分割cGVHD红斑。我们通过传统方法或标记明确受影响的皮肤(“不要遗漏”,DNM)和明确未受影响的皮肤(“不要纳入”,DNI),将此变化检测算法固定在单张照片对的人工标注上。将固定后的算法应用于一名患者六个随访阶段的其余47对测试照片中的每一对。我们使用Dice指数和两名皮肤科专科医生的意见来评估算法性能。无论该算法是固定在传统分割(中位准确率:0.77,四分位间距0.62 - 0.87)还是DNM/DNI分割(0.81,0.65 - 0.89)上,变化检测算法都能正确分配80%的像素。当算法固定在不同标注者的标记上时,DNM/DNI方法比传统方法(0.73 - 0.81)能实现更一致的输出(中位Dice指数:0.94 - 0.96)。与仅查看皮疹照片相比,添加基线照片提高了皮肤科医生评分的可靠性。评分者间组内相关系数从0.19(95%置信区间下限:0.06)增至0.51(下限:0.35)。总之,一种变化检测算法能准确地在cGVHD的纵向照片中分配红斑。通过专门使用可靠的人工分割来固定算法,可靠性得到显著提高。基线照片提高了两名皮肤科医生在评估算法性能方面的一致性。