Suppr超能文献

在完全没有体感反馈的情况下,握力控制的预测性如何?

How predictive is grip force control in the complete absence of somatosensory feedback?

作者信息

Nowak Dennis A, Glasauer Stefan, Hermsdorfer Joachim

机构信息

Department of Neurology and Clinical Neurophysiology, Academic Hospital München Bogenhausen, Technical University of Munich, Englschalkingerstrasse 77, D-81925 Munich, Germany.

出版信息

Brain. 2004 Jan;127(Pt 1):182-92. doi: 10.1093/brain/awh016. Epub 2003 Oct 21.

Abstract

Grip force control relies on accurate internal models of the dynamics of our motor system and the external objects we manipulate. Internal models are not fixed entities, but rather are trained and updated by sensory experience. Sensory feedback signals relevant object properties and mechanical events, e.g. at the skin-object interface, to modify motor commands and update internal representations automatically. Here we prove that intact sensory feedback is essential for predictive grip force regulation. The efficiency and precision of grip force adjustments to load fluctuations arising from vertical and horizontal point-to-point arm movements with a hand-held object were analysed in a chronically deafferented subject (G.L.) and three healthy control subjects. Point-to-point movements started and ended with the object being held stationary. G.L. and healthy controls produced similar accelerations of the grasped object and consequently similar load magnitudes during vertical and horizontal movements. Compared with healthy controls, G.L. employed inefficiently high grip forces when holding and moving the object, indicating inaccurate force scaling to object weight and inertial loads. For healthy controls, the grip force profile was precisely timed to the movement-induced load fluctuations during vertical and horizontal movements. However, G.L.'s grip force profile was not processed to match differential loading requirements of movement direction. We conclude that predictive grip force control requires at least intermittent sensory feedback to signal the effectiveness of descending motor commands and to update internal models.

摘要

握力控制依赖于我们运动系统以及所操纵外部物体动力学的精确内部模型。内部模型并非固定不变的实体,而是通过感官体验进行训练和更新。感官反馈信号会传递相关物体属性和机械事件,例如在皮肤与物体的界面处,从而自动修改运动指令并更新内部表征。在此我们证明,完整的感官反馈对于预测性握力调节至关重要。我们分析了一名慢性去传入神经受试者(G.L.)和三名健康对照受试者在手持物体进行垂直和水平点对点手臂运动时,针对因负载波动而进行的握力调整的效率和精度。点对点运动开始和结束时物体保持静止。G.L.和健康对照受试者在垂直和水平运动过程中,对被抓握物体产生了相似的加速度,因此负载大小也相似。与健康对照受试者相比,G.L.在握持和移动物体时使用了过高且低效的握力,这表明其对物体重量和惯性负载的力缩放不准确。对于健康对照受试者,握力曲线在垂直和水平运动过程中能精确地与运动引起的负载波动同步。然而,G.L.的握力曲线并未根据运动方向的不同负载要求进行调整。我们得出结论,预测性握力控制至少需要间歇性的感官反馈,以传达下行运动指令的有效性并更新内部模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验