Wang Denong
Functional Genomics Division, Columbia Genome Center College of Physicians & Surgeons, Columbia University, 1150 St. Nicholas Avenue, Room 506, New York, NY 10002, USA.
Proteomics. 2003 Nov;3(11):2167-75. doi: 10.1002/pmic.200300601.
Sugar chains are abundantly expressed on the outer surfaces of the vast majority of viral, bacterial, protozoan and fungal pathogens, as well as on the membranes of mammalian cells. This class of carbohydrate molecule is without peer in structural diversity and is characteristically suitable for storing and displaying biological signals for molecular and cellular recognition. Exploring the biological information contained in sugar chains is an important topic of current postgenomic research. To facilitate these investigations, we have focused on the establishment of a carbohydrate-based microarray technology. Recently, we reported that a large panel of carbohydrate-containing macromolecules, including polysaccharides, natural glycoconjugates, and the mono- and oligosaccharides coupled to carrier molecules, can be stably immobilized on a microglass slide to produce a large-scale carbohydrate microarray. In this review, we attempt to summarize our recent progress in using this technology to uncover the carbohydrate-based biological signals that are recognized by the human and animal immune systems. We also discuss the potential of various platforms of carbohydrate microarrays that were recently established and analyze the challenges to future development of carbohydrate microarray technologies and their applications.
糖链在绝大多数病毒、细菌、原生动物和真菌病原体的外表面以及哺乳动物细胞的膜上大量表达。这类碳水化合物分子在结构多样性方面无与伦比,并且特别适合储存和展示用于分子和细胞识别的生物信号。探索糖链中包含的生物信息是当前后基因组研究的一个重要课题。为了促进这些研究,我们专注于建立基于碳水化合物的微阵列技术。最近,我们报道了大量含碳水化合物的大分子,包括多糖、天然糖缀合物以及与载体分子偶联的单糖和寡糖,可以稳定地固定在微玻片上,以产生大规模的碳水化合物微阵列。在这篇综述中,我们试图总结我们最近在使用这项技术揭示人和动物免疫系统识别的基于碳水化合物的生物信号方面取得的进展。我们还讨论了最近建立的各种碳水化合物微阵列平台的潜力,并分析了碳水化合物微阵列技术及其应用未来发展面临的挑战。