Daly Craig J, McGrath John C
Faculty of Biomedical and Life Sciences, Division of Neuroscience and Biomedical Systems, University of Glasgow, Wolfson Building (Office 448), West Medical Building (Lab 440), University Avenue, G12 8QQ, Glasgow, UK.
Pharmacol Ther. 2003 Nov;100(2):101-18. doi: 10.1016/j.pharmthera.2003.08.001.
Fluorescent molecules bound to receptors can show their location and, if binding is reversible, can provide pharmacological information such as affinity and proximity between interacting molecules. The spatial precision offered by visualisation transcends the diverse localisation and low molecular concentration of receptor molecules. Consequently, the relationships between receptor location and function and life cycles of receptors have become better understood as a result of fluorescent labeling. Each of these aspects contributes new insights to drug action and potential new targets. The relationships between spatial distribution of receptor and function are largely unknown. This is particularly apparent for native receptors expressed in their normal host tissues where communication between heterogeneous cell types influences receptor distribution and function. In cultured cell systems, particularly for G-protein-coupled receptors (GPCR), fluorescence-based methods have enabled the visualisation of the cycle of agonist-stimulated receptor clustering, endocytic internalisation to the perinuclear region, degradation of the receptor-ligand complex, and recycling back to the surface membrane. Using variant forms of green fluorescent protein (GFP), antibodies, or fluorescent ligands, it is possible to detect or visualise the formation of oligomeric receptor complexes. Careful selection of fluorescent molecules based on their spectral properties enables resonance energy transfer and multilabel visualisation with colocalisation studies. Fluorescent agonist and antagonist ligands are now being used in parallel with GFP to study receptor cycling in live cells. This review covers how labeling and visualisation technologies have been applied to the study of major pharmacologically important receptors and illustrates this by giving examples of recent techniques that have relied on GFP, antibodies, or fluorescent ligands alone or in combination for the purpose of studying GPCR.
与受体结合的荧光分子能够显示其位置,并且如果结合是可逆的,还能提供药理学信息,例如相互作用分子之间的亲和力和接近程度。可视化所提供的空间精度超越了受体分子多样的定位和低分子浓度。因此,由于荧光标记,受体位置与功能以及受体生命周期之间的关系得到了更好的理解。这些方面的每一个都为药物作用和潜在的新靶点提供了新的见解。受体的空间分布与功能之间的关系在很大程度上仍然未知。这在正常宿主组织中表达的天然受体中尤为明显,其中异质细胞类型之间的通讯会影响受体的分布和功能。在培养细胞系统中,特别是对于G蛋白偶联受体(GPCR),基于荧光的方法能够可视化激动剂刺激的受体聚集循环、向核周区域的内吞内化、受体 - 配体复合物的降解以及再循环回到表面膜。使用绿色荧光蛋白(GFP)的变体形式、抗体或荧光配体,可以检测或可视化寡聚受体复合物的形成。根据荧光分子的光谱特性进行仔细选择,能够实现共振能量转移以及通过共定位研究进行多标记可视化。荧光激动剂和拮抗剂配体现在正与GFP并行使用,以研究活细胞中的受体循环。本综述涵盖了标记和可视化技术如何应用于主要药理学重要受体的研究,并通过给出最近仅依靠GFP、抗体或荧光配体单独或组合用于研究GPCR的技术示例来说明这一点。