Suppr超能文献

利用包含基因多态性和临床参数的人工神经网络预测不可手术切除肺癌的生存率。

Prediction of survival in surgical unresectable lung cancer by artificial neural networks including genetic polymorphisms and clinical parameters.

作者信息

Hsia Te-Chun, Chiang Hung-Chih, Chiang David, Hang Liang-Wen, Tsai Fuu-Jen, Chen Wen-Chi

机构信息

Department of Internal Medicine, China Medical College Hospital, Taichung, Taiwan.

出版信息

J Clin Lab Anal. 2003;17(6):229-34. doi: 10.1002/jcla.10102.

Abstract

Lung cancer, a common malignancy in Taiwan, involves multiple factors, including genetics and environmental factors. The survival time is very short once cancer is diagnosed as being in advanced stage and surgically unresectable. Therefore, a good model of prediction of disease outcome is important for a treatment plan. We investigated the survival time in advanced lung cancer by using computer science from the genetic polymorphism of the p21 and p53 genes in conjunction with patients' general data. We studied 75 advanced and surgical unresectable lung cancer patients. The prediction of survival time was made by comparing real data obtained from follow-up periods with data generated by an artificial neural network (ANN). The most important input variable was the clinical staging of lung cancer patients. The second and third most important variables were pathological type and responsiveness to treatment, respectively. There were 25 neurons in the input layer, four neurons in the hidden layer-1, and one neuron in the output layer. The predicted accuracy was 86.2%. The average survival time was 12.44 +/- 7.95 months according to real data and 13.16 +/- 1.77 months based on the ANN results. ANN provides good prediction results when clinical parameters and genetic polymorphisms are considered in the model. It is possible to use computer science to integrate the genetic polymorphisms and clinical parameters in the prediction of disease outcome. Data mining provides a promising approach to the study of genetic markers for advanced lung cancer.

摘要

肺癌是台湾地区常见的恶性肿瘤,涉及多种因素,包括遗传和环境因素。一旦癌症被诊断为晚期且无法手术切除,生存时间就会非常短。因此,一个良好的疾病预后预测模型对于治疗方案很重要。我们结合患者的一般数据,利用计算机科学通过p21和p53基因的遗传多态性来研究晚期肺癌的生存时间。我们研究了75例晚期且无法手术切除的肺癌患者。通过将随访期获得的实际数据与人工神经网络(ANN)生成的数据进行比较来预测生存时间。最重要的输入变量是肺癌患者的临床分期。第二和第三重要的变量分别是病理类型和对治疗的反应性。输入层有25个神经元,隐藏层-1有4个神经元,输出层有1个神经元。预测准确率为86.2%。根据实际数据,平均生存时间为12.44±7.95个月,基于人工神经网络结果为13.16±1.77个月。当模型中考虑临床参数和遗传多态性时,人工神经网络提供了良好的预测结果。在疾病预后预测中利用计算机科学整合遗传多态性和临床参数是可行的。数据挖掘为晚期肺癌遗传标志物的研究提供了一种有前景的方法。

相似文献

引用本文的文献

1
A Holistic Approach to Implementing Artificial Intelligence in Lung Cancer.肺癌中实施人工智能的整体方法。
Indian J Surg Oncol. 2025 Feb;16(1):257-278. doi: 10.1007/s13193-024-02079-6. Epub 2024 Sep 5.

本文引用的文献

1
Genetic Algorithm guided Selection: variable selection and subset selection.
J Chem Inf Comput Sci. 2002 Jul-Aug;42(4):927-36. doi: 10.1021/ci010247v.
7
8
Genetic variations can point the way to disease genes.
Nature. 1999 Oct 21;401(6755):734. doi: 10.1038/44432.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验