Anemüller Jörn, Sejnowski Terrence J, Makeig Scott
Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, 9500 Gilman Dr, Dept 0961, La Jolla, CA 92093-0961, USA.
Neural Netw. 2003 Nov;16(9):1311-23. doi: 10.1016/j.neunet.2003.08.003.
Independent component analysis (ICA) has proven useful for modeling brain and electroencephalographic (EEG) data. Here, we present a new, generalized method to better capture the dynamics of brain signals than previous ICA algorithms. We regard EEG sources as eliciting spatio-temporal activity patterns, corresponding to, e.g. trajectories of activation propagating across cortex. This leads to a model of convolutive signal superposition, in contrast with the commonly used instantaneous mixing model. In the frequency-domain, convolutive mixing is equivalent to multiplicative mixing of complex signal sources within distinct spectral bands. We decompose the recorded spectral-domain signals into independent components by a complex infomax ICA algorithm. First results from a visual attention EEG experiment exhibit: (1). sources of spatio-temporal dynamics in the data, (2). links to subject behavior, (3). sources with a limited spectral extent, and (4). a higher degree of independence compared to sources derived by standard ICA.
独立成分分析(ICA)已被证明在对大脑和脑电图(EEG)数据进行建模方面很有用。在此,我们提出一种新的通用方法,相较于先前的ICA算法,它能更好地捕捉大脑信号的动态变化。我们将脑电图源视为引发时空活动模式,例如对应于激活在整个皮层传播的轨迹。这导致了一个卷积信号叠加模型,与常用的瞬时混合模型形成对比。在频域中,卷积混合等同于在不同频谱带内对复信号源进行乘法混合。我们通过一种复信息最大化ICA算法将记录的频域信号分解为独立成分。一项视觉注意力脑电图实验的初步结果显示:(1). 数据中时空动态的源;(2). 与受试者行为的关联;(3). 频谱范围有限的源;以及(4). 与通过标准ICA得出的源相比具有更高的独立性。