Bridwell David A, Rachakonda Srinivas, Silva Rogers F, Pearlson Godfrey D, Calhoun Vince D
The Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM, 87131, USA.
Department of ECE, University of New Mexico, Albuquerque, NM, 87131, USA.
Brain Topogr. 2018 Jan;31(1):47-61. doi: 10.1007/s10548-016-0479-1. Epub 2016 Feb 24.
Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http://mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations.
脑电图(EEG)振荡主要出现在1秒(1赫兹)至20毫秒(50赫兹)的周期内,并被细分为不同的频带,这些频带似乎对应于不同的认知过程。在过去几十年中,已经开发并实施了多种盲源分离(BSS)方法,从而更好地分离这些不同的过程。在本研究中,我们证明了多受试者BSS用于推导不同EEG时空谱图的可行性。使用EEGIFT工具箱(http://mialab.mrn.org/software/eegift/)对真实和逼真的模拟数据集(模拟代码可在http://mialab.mrn.org/software/simeeg获得)进行多受试者时空谱EEG分解。评估了十二种不同的分解算法。在模拟数据中,WASOBI和COMBI似乎是性能最佳的算法,因为它们在一系列组件数量和噪声水平下分解了四个源。RADICAL ICA、ERBM、INFOMAX ICA、ICA EBM、FAST ICA和JADE OPAC在较小的组件数量和噪声水平范围内分解了一部分源。INFOMAX ICA、FAST ICA、WASOBI和COMBI在真实数据集中生成了数量最多的稳定源,并提供了底层时空谱图的部分不同视图。我们建议采用多受试者BSS方法和选定的算法,用于进一步研究健康人群和临床人群中不同的时空谱网络。