Suppr超能文献

超越ERP组件:整合脑电图(EEG)与行为的方法的选择性综述

Moving Beyond ERP Components: A Selective Review of Approaches to Integrate EEG and Behavior.

作者信息

Bridwell David A, Cavanagh James F, Collins Anne G E, Nunez Michael D, Srinivasan Ramesh, Stober Sebastian, Calhoun Vince D

机构信息

The Mind Research Network, Albuquerque, NM, United States.

Department of Psychology, University of New Mexico, Albuquerque, NM, United States.

出版信息

Front Hum Neurosci. 2018 Mar 26;12:106. doi: 10.3389/fnhum.2018.00106. eCollection 2018.

Abstract

Relationships between neuroimaging measures and behavior provide important clues about brain function and cognition in healthy and clinical populations. While electroencephalography (EEG) provides a portable, low cost measure of brain dynamics, it has been somewhat underrepresented in the emerging field of model-based inference. We seek to address this gap in this article by highlighting the utility of linking EEG and behavior, with an emphasis on approaches for EEG analysis that move beyond focusing on peaks or "components" derived from averaging EEG responses across trials and subjects (generating the event-related potential, ERP). First, we review methods for deriving features from EEG in order to enhance the signal within single-trials. These methods include filtering based on user-defined features (i.e., frequency decomposition, time-frequency decomposition), filtering based on data-driven properties (i.e., blind source separation, BSS), and generating more abstract representations of data (e.g., using deep learning). We then review cognitive models which extract latent variables from experimental tasks, including the drift diffusion model (DDM) and reinforcement learning (RL) approaches. Next, we discuss ways to access associations among these measures, including statistical models, data-driven joint models and cognitive joint modeling using hierarchical Bayesian models (HBMs). We think that these methodological tools are likely to contribute to theoretical advancements, and will help inform our understandings of brain dynamics that contribute to moment-to-moment cognitive function.

摘要

神经影像学测量与行为之间的关系为健康人群和临床人群的脑功能及认知提供了重要线索。虽然脑电图(EEG)提供了一种便携、低成本的脑动力学测量方法,但在基于模型的推理这一新兴领域中,它的应用相对较少。在本文中,我们试图通过强调将EEG与行为联系起来的实用性来填补这一空白,重点关注EEG分析方法,这些方法不再局限于关注通过对不同试验和受试者的EEG反应进行平均得到的峰值或“成分”(即产生事件相关电位,ERP)。首先,我们回顾从EEG中提取特征以增强单次试验信号的方法。这些方法包括基于用户定义特征的滤波(即频率分解、时频分解)、基于数据驱动特性的滤波(即盲源分离,BSS)以及生成更抽象的数据表示(例如,使用深度学习)。然后,我们回顾从实验任务中提取潜在变量的认知模型,包括漂移扩散模型(DDM)和强化学习(RL)方法。接下来,我们讨论获取这些测量之间关联的方法,包括统计模型、数据驱动的联合模型以及使用分层贝叶斯模型(HBM)的认知联合建模。我们认为这些方法工具可能有助于理论进步,并将有助于增进我们对有助于瞬间认知功能的脑动力学的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bce9/5879117/6dbed75a423d/fnhum-12-00106-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验